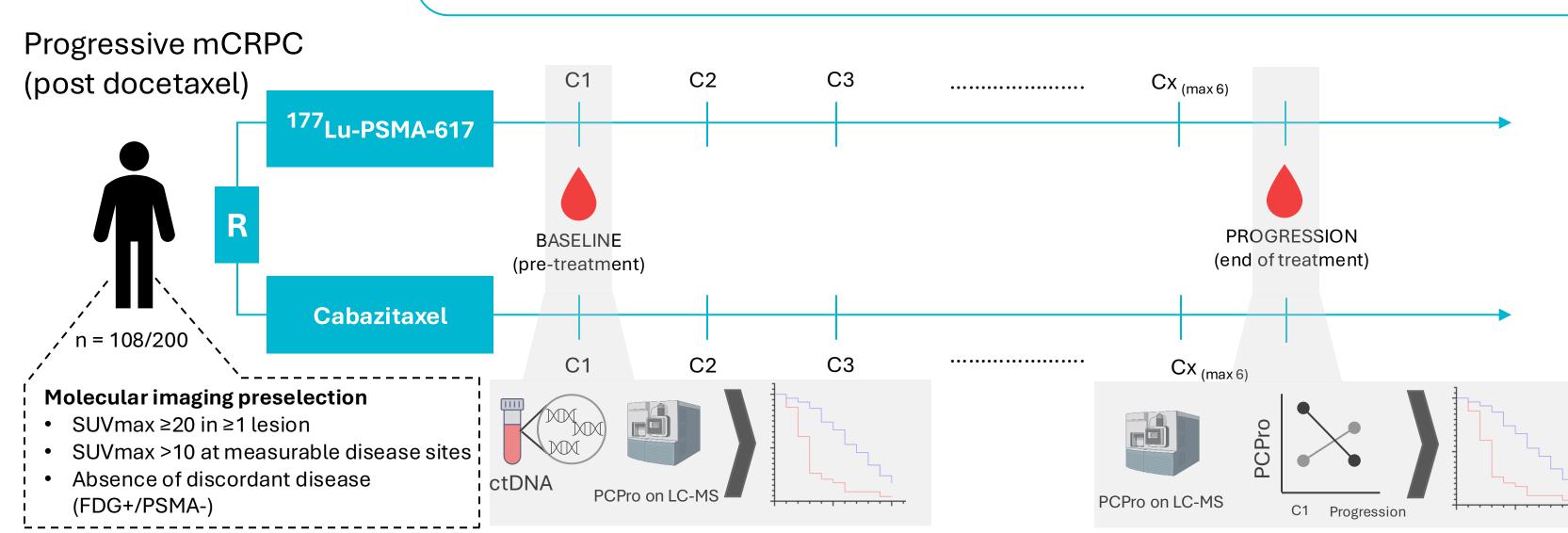


PCPro as a prognostic plasma lipidomic biomarker in TheraP (ANZUP 1603): a randomised trial of [177Lu]Lu-PSMA-617 (LuPSMA) vs cabazitaxel in metastatic castration resistant prostate cancer (mCRPC)

Tahlia Scheinberg^{1,2,3,4,23}, Rhiannon Mellor^{1,3,5,23}, Arun A Azad^{6,7,23}, Paul Bonnitcha^{2,4,8}, Iames Buteau^{7,9,23}, Hui-Ming Lin^{3,5,23}, Andrew J Martin^{16,23}, Peter J Meikle^{17,18}, Andrew M Scott^{19,20,21,22,23}, Michael S Horvath^{1,2,3,4,5,23} for the TheraP trial investigators on behalf of the Australian and New Zealand Urogenital and Prostate Cancer Trials Group (ANZUP)

<text> 9Prostate Cancer Theranostics and Imaging Centre of Excellence, Molecular Imaging Centre of Excellence, Molecular Imaging Centre of Excellence, Molecular Imaging and Theranostics and Nuclear Medicine, St Vincent's Hospital, Perth, Australia, 12Department of Nuclear Medicine, St Vincent's Hospital, Perth, Australia, 14Department of Nuclear Medicine, St Vincent's Hospital, Perth, Australia, 14Department of Nuclear Medicine, St Vincent's Hospital, Perth, Australia, 14Department of Nuclear Medicine, St Vincent's Hospital, Perth, Australia, 14Department of Nuclear Medicine, St Vincent's Hospital, Perth, Australia, 14Department of Nuclear Medicine, St Vincent's Hospital, Perth, Australia, 14Department of Nuclear Medicine, St Vincent's Hospital, Perth, Australia, 14Department of Nuclear Medicine, St Vincent's Hospital, Perth, Australia, 14Department of Nuclear Medicine, St Vincent's Hospital, Perth, Australia, 14Department of Nuclear Medicine, St Vincent's Hospital, Perth, Australia, 14Department of Nuclear Medicine, St Vincent's Hospital, Perth, Australia, 14Department of Nuclear Medicine, St Vincent's Hospital, Perth, Australia, 14Department of Nuclear Medicine, St Vincent's Hospital, Perth, Australia, 14Department of Nuclear Medicine, St Vincent's Hospital, Perth, Australia, 14Department of Nuclear Medicine, St Vincent's Hospital, Perth, Australia, 14Department of Nuclear Medicine, St Vincent's Hospital, Perth, Australia, 14Department of Nuclear Medicine, St Vincent's Hospital, Perth, Australia, 14Department of Nuclear Medicine, St Vincent's Hospital, Perth, Australia, 14Department of Nuclear Medicine, St Vincent's Hospital, Perth, Australia, 14Department of Nuclear Medicine, St Vincent's Hospital, Nuclear Medicine, St Vincent's Hospital, Nuclear Medicine, St Vincent's Hospital, Nuclear Medicine, Nuclea 14Medical School, University of Western Australia, Perth, Australia, Perth, Australia, Perth, Australia, 15Vancouver, Canada, 16NHMRC Clinical trials centre, University, Melbourne, Australia, 19Department of Western Australia, 18La Trobe University, Melbourne, Australia, 19Department of Medicine, University of Melbourne, Melbourne, Australia, 18La Trobe University, Melbourne, Australia, 19Department of Medicine, University of Melbourne, Australia, 19Department of Urological Sciences, University of Sydney, Australia, 19Department of Medicine, University of Melbourne, Australia, 19Department of Urological Sciences, University of Sydney, Australia, 19Department of Medicine, University of Melbourne, Australia, 19Department of Urological Sciences, University of Sydney, Australia, 19Department of Urological Sciences, University of Urological Sciences, University of Sydney, Australia, 19Department of Urological Sciences, University of Urological Sciences, Urological S ²⁰Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Australia, ²¹Olivia Newton-John Cancer Research Institute, Melbourne, Australia, ²³The Australia, ²³The Australia and Prostate Cancer Trials Group (ANZUP), Randwick, NSW, Australia.

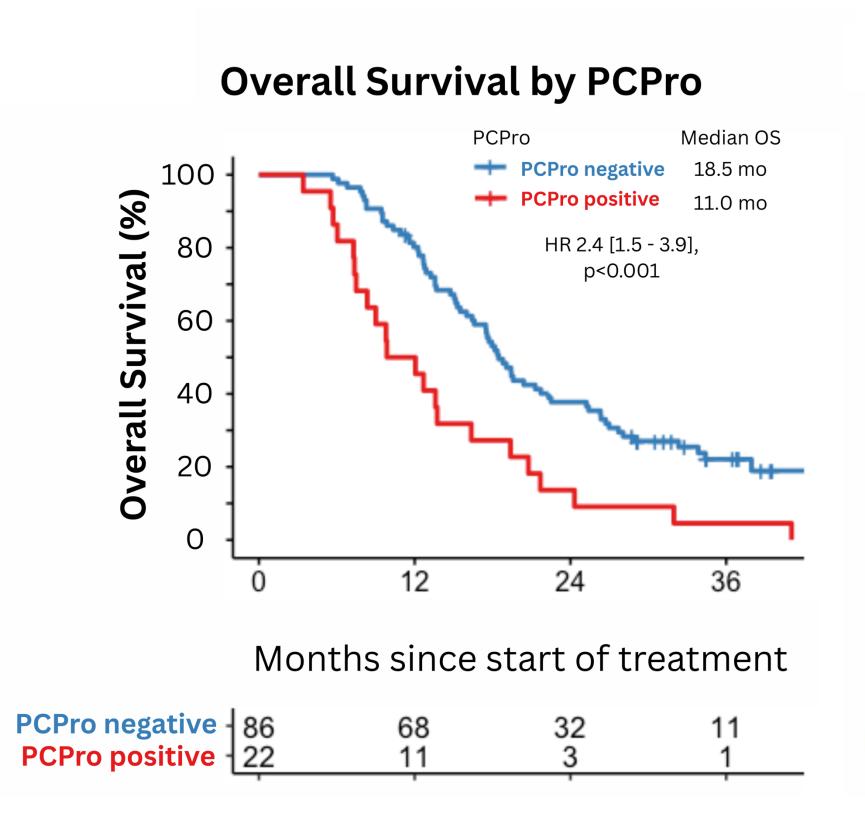

Background

- Lutetium-177^{[177}Lu]Lu-PSMA-617 is a recently established standard-of-care therapy in patients with metastatic castration-resistant prostate cancer (mCRPC).
- The TheraP trial showed that LuPSMA improves PSA response rate (RR), objective tumour RR and radiographic progression free survival (rPFS), compared with cabazitaxel in people with PSMA-positive, non-FDG-discordant mCRPC progressing after docetaxel. 1,2
- Elevated circulating sphingolipids, including ceramides, are associated with shorter PFS and OS in mCRPC treated with docetaxel or ARPIs.³
- PCPro is a validated, plasma lipid biomarker, developed in accordance with CLIA/NATA guidelines, comprising Ceramides: Cer(d18:1/18:0), Cer(d18:1/24:0), Cer(d18:1/24:1), total cholesterol and triglycerides.⁴
- PCPro positive patients with mCRPC have shorter rPFS and overall survival (OS) when treated with ARPIs and shorter OS when treated with docetaxel
- Quantitative PET/CT and ctDNA biomarkers have demonstrated predictive and prognostic capability. 5,6
- This is the first report of the association of PCPro status with clinical outcomes in people treated with LuPSMA or cabazitaxel.

Study Design

Study Aims

- 1. Describe the association between PCPro with clinical outcomes in participants treated with LuPSMA or cabazitaxel in the TheraP study
- 2. Evaluate the association of PCPro with established molecular imaging prognostic thresholds and ctDNA% categories



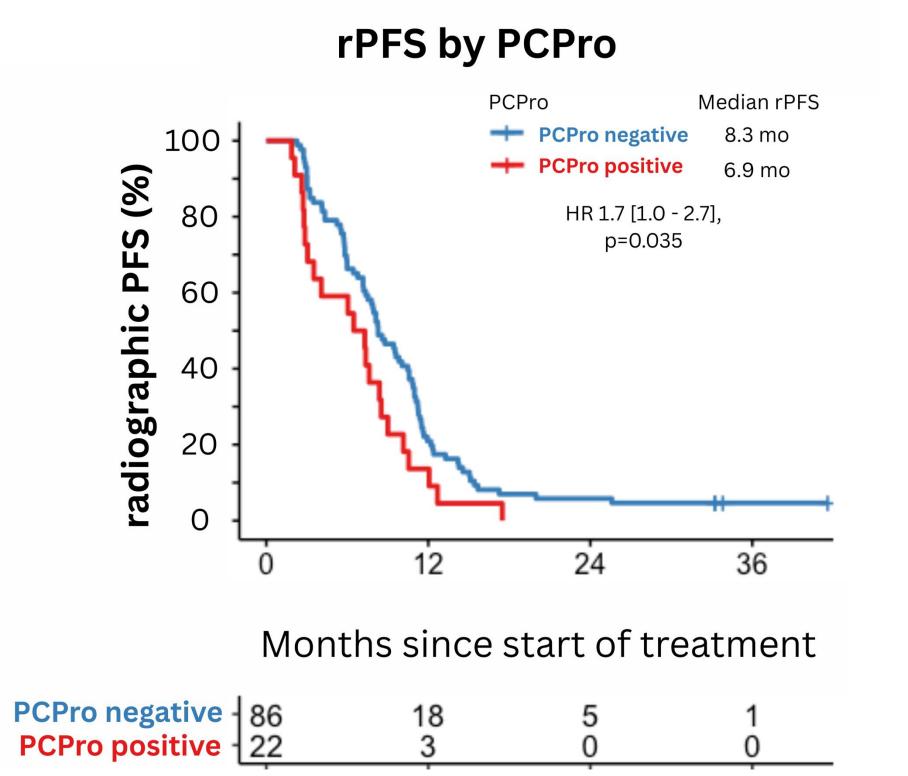
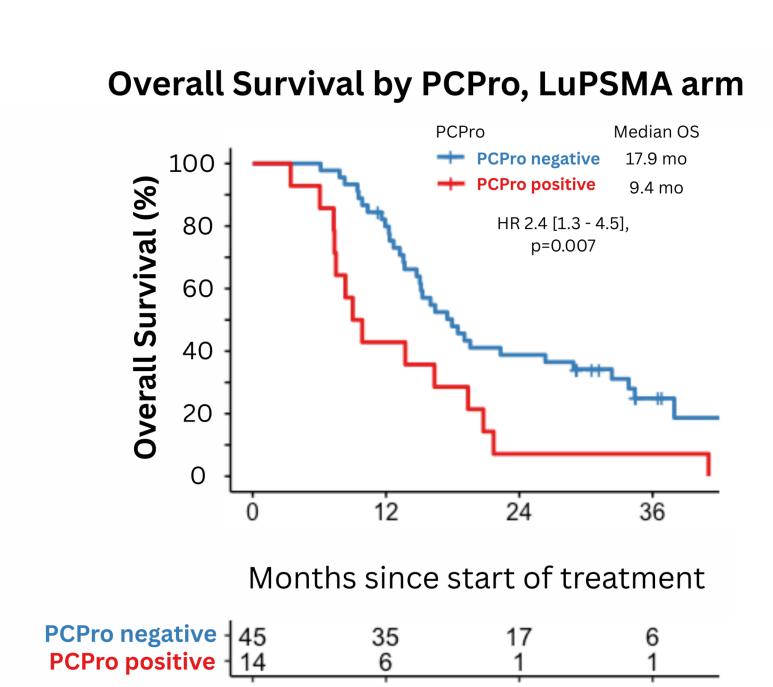
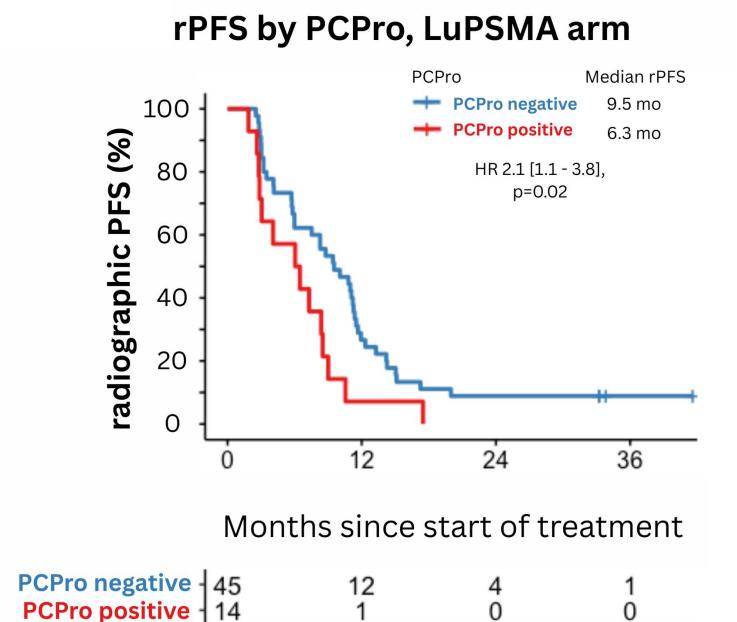

Patient Characteristics					
	LuPSMA (biomarker cohort) (n=60)	Cabazitaxel (biomarker cohort) (n=49)	LuPSMA (whole cohort) (n=99)	Cabazitaxel (whole cohort) (n=101)	
Age, median (IQR)	72 (67 – 76)	72 (68 – 76)	72 (67 – 77)	72 (67 – 77)	
> 20 metastases*, n (%) ECOG, N (%)	45 (75)	38 (78)	77 (78)	79 (78)	
0	30 (50)	29 (59)	42 (42)	44 (44)	
1-2	30 (50)	20 (42)	57 (58)	56 (55)	
Unknown	0	0	0	1 (1)	
PSA (ng/mL), median (IQR)	73.6 (38.5-128.15)	95.3 (34.7-230)	93.5 (44-219)	110 (64-245)	
Alkaline phosphatase (U/L), median (IQR)	112 (88-174)	133 (83-190)	111 (83-199)	130 (79-187)	
Disease location, n (%)					
Lymph node only	6 (10)	5 (10)	7 (7)	9 (9)	
Bone metastases	52 (87)	43 (88)	90 (91)	90 (89)	
Visceral metastases	4 (7)	4 (8)	7 (7)	13 (13)	
Previous ARPI, n (%) Abiraterone only Enzalutamide only Both	15 (25) 12 (20) 29 (48)	13 (27) 4 (8) 27 (55)	21 (21) 49 (50) 21 (21)	24 (24) 58 (57) 9 (9)	
PSMA SUVmean, median (IQR)	9.0 (7.1-11.7)	8.5 (6.9-10.2)	8.5 (7.1-11.5)	8.5 (6.8-10.5)	
FDG-PET MTV (mL), median (IQR)	101.5 (29.8-266.3)	66.6 (14.3-224)	100 (23-252.5)	78 (22-248)	
PSMA SUVmean ≥10, n (%)	22 (37)	15 (31)	37 (37)	33 (33)	
FDG MTV ≥200mL, n (%)	19 (32)	13 (27)	31 (31)	30 (30)	
Median rPFS, months (95% CI)	8.43 (7.29 – 9.53)	7.89 (7.36 – 8.57)	8.51 (6.47 – 10.97)	7.95 (7.20 – 9.13)	
HR rPFS (95% CI), p value	0.78 (0.59 – 1.03), p=0.075		0.68 (0.50 – 0.93), p=0.015		
Median OS, months (95% CI)	16.4 (13.7 – 21.2)	18.4 (15.5 – 24.3)	16.36 (13.73 – 19.58)	19.42 (15.51 – 23.06	
HR OS (95% CI), p value	0.98 (0.64 – 1.49), p=0.9		0.98 (0.71 – 1.36), p=0.9		

Table 1: Patient characteristics of biomarker and trial cohorts

* Disease burden as assessed by [68G1]Ga-PSMA-11

PCPro is prognostic for OS and rPFS

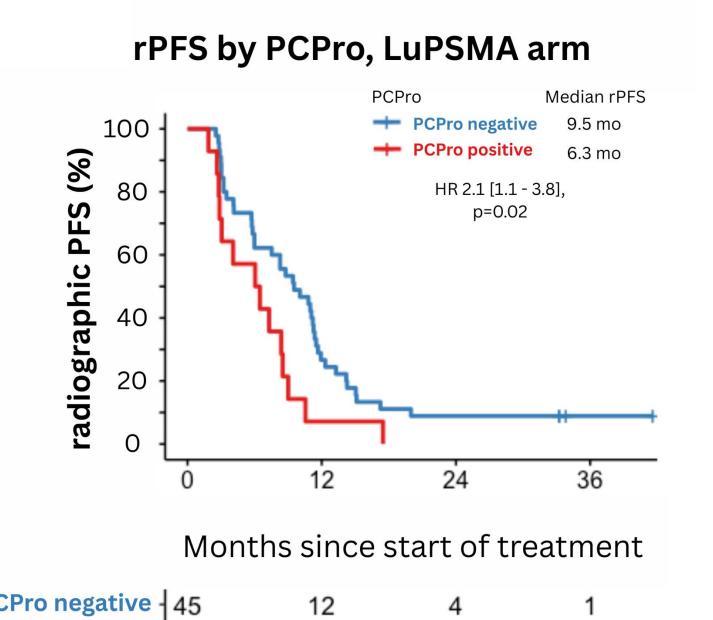


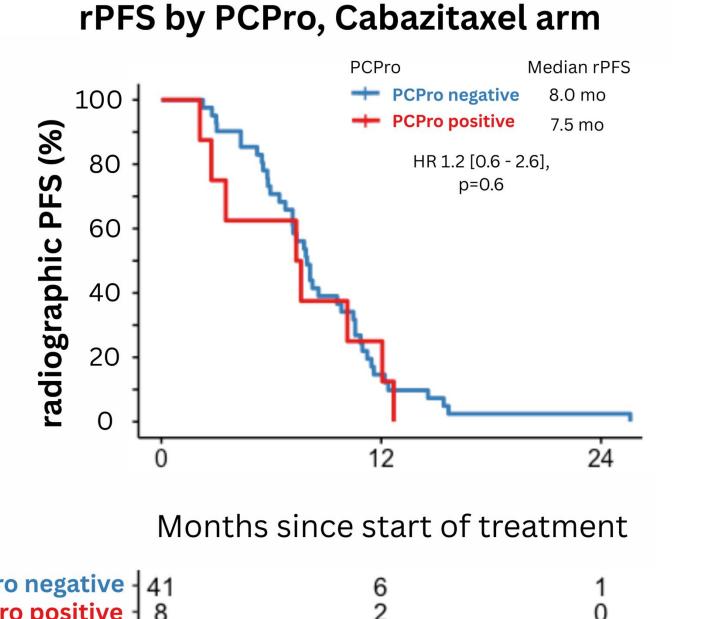

other prognostic biomarkers

PCPro is prognostic independent of

Variable	Hazard Ratio OS [95% CI]	OS p value
PCPro, positive	1.78 [1.05 – 3.03]	0.032
PSMA PET SUV mean <10	1.39 [0.82 – 2.34]	0.2
FDG PET Mean Tumour Volume ≥ 200	2.29 [1.40 – 3.75]	0.001
ctDNA fraction	(Reference)	(Reference)
ctDNA 2-30%	4.07 [1.55 – 10.7]	0.004
ctDNA >30%	8.91 [3.17 – 25.1]	<0.001

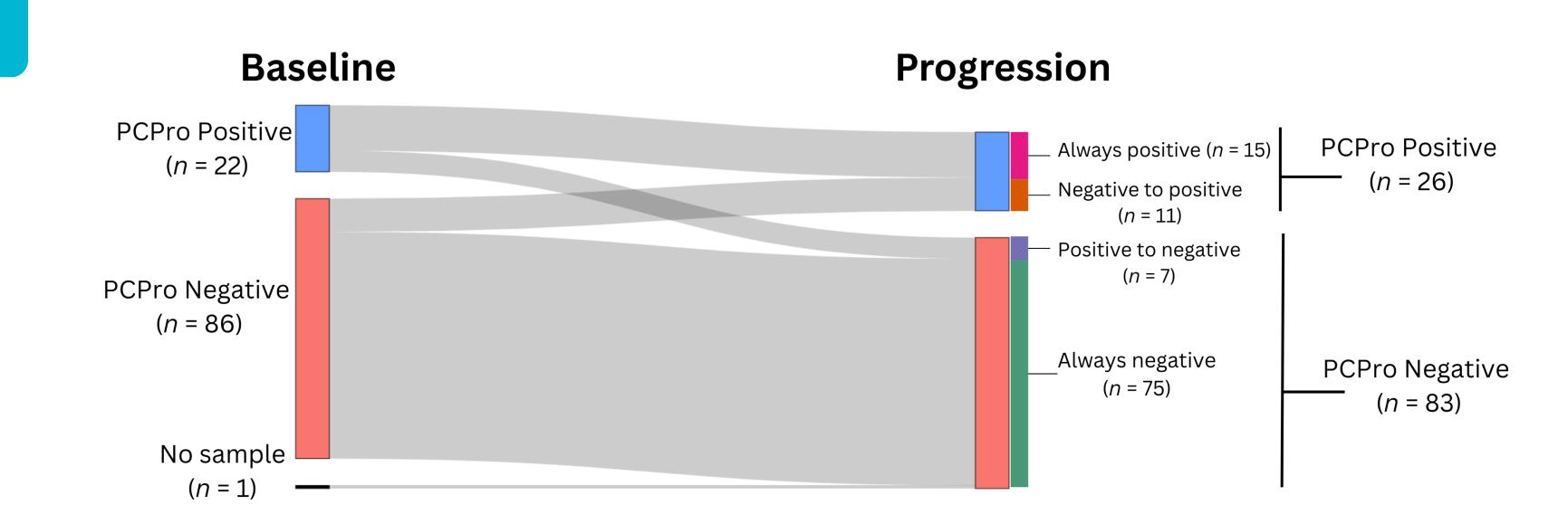
Table 3: Multivariable analysis for PCPro with other prognostic variables for OS

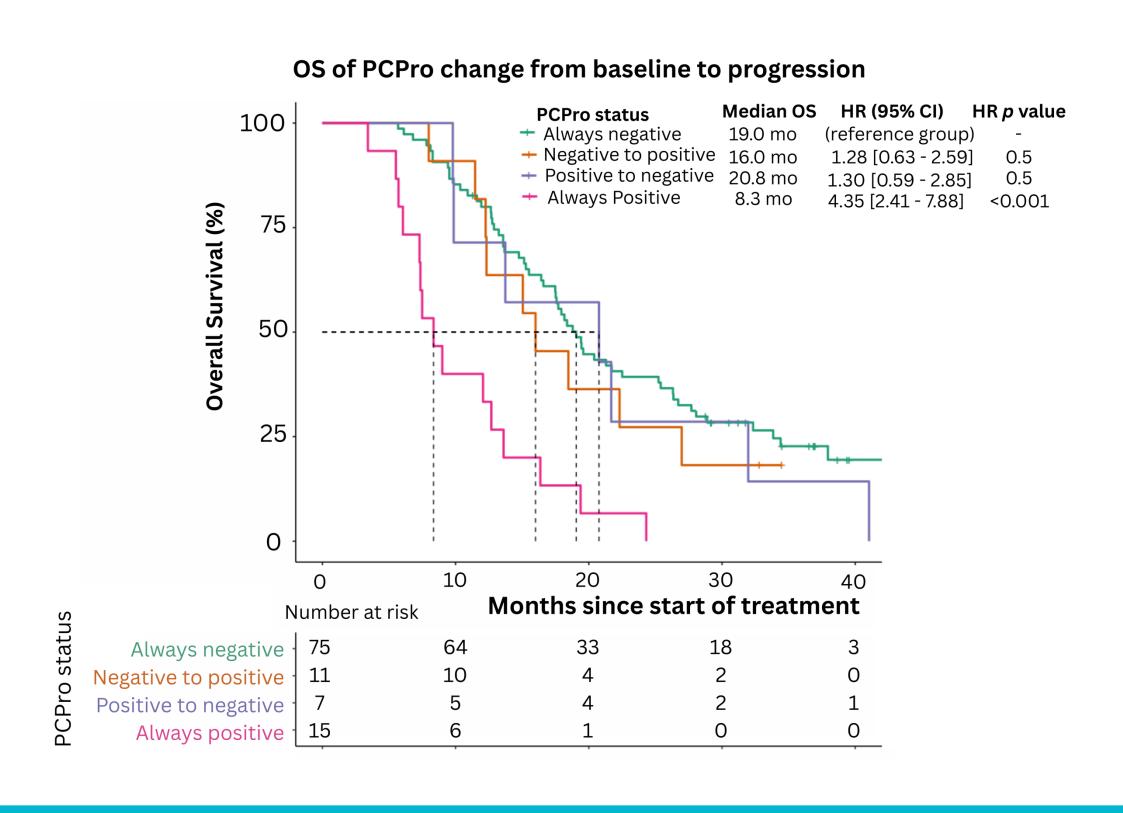



Overall Survival by PCPro, Cabazitaxel arm **PCPro negative** 19.4 mo → PCPro positive 12.4 mo HR 2.1 [0.97 - 4.6], Months since start of treatment PCPro negative 41 PCPro negative 41 PCPro positive

Variable	Hazard Ratio OS [95% CI], p value	Interaction variable p value OS	Hazard Ratio rPFS [95% CI], p value	Interaction variable p value, rPFS
PCPro, positive	2.40 [1.47-3.92], p<0.001	0.8	1.67 [1.04 – 2.68], p=0.034	0.2
Treatment arm, LuPSMA	0.92 [0.60 – 1.41], p=0.8		0.78 [0.53 – 1.15], p=0.2	

Table 2: Bivariable Cox regression of PCPro and Treatment arm


PCPro is prognostic independent of treatment arm



Variable	Hazard Ratio OS [95% CI], p value	Interaction variable p value OS	Hazard Ratio rPFS [95% CI], p value	Interaction variable p value, rPFS
PCPro, positive	2.40 [1.47-3.92], p<0.001	0.8	1.67 [1.04 – 2.68], p=0.034	
Treatment arm, LuPSMA	0.92 [0.60 – 1.41], p=0.8		0.78 [0.53 – 1.15],	0.2

Patients who remain PCPro positive at progression have the worst prognosis

Conclusions

- PCPro positive status was an independently significant prognostic factor for shorter OS and rPFS in participants treated in the TheraP trial with either LuPSMA or cabazitaxel
- Participants who remained PCPro positive at baseline and at progression had the worst prognosis
- These data support further research of PCPro as a prognostic biomarker in people with mCRPC being treated with LuPSMA or taxane chemotherapy.

References

Hofman et al. Lancet 2021

- Hofman et al. Lancet oncology 2024
- Lin et al. Prostate Cancer and Prostatic Diseases 2021 Scheinberg et al. Prostate Cancer and Prostatic Diseases 2023
- Buteau et al. Lancet oncology 2022 Kwan et al. Nature Medicine 2025

Correspondence to lisa.horvath@lh.org.au

More Information

We thank the trial participants, principal investigators, co-investigators, and study coordinators at all participating centres for their commitment to this trial. TheraP is a partnership between ANZUP Cancer Trials Group and the Prostate Cancer Foundation of Australia (PCFA) with support from the Australian Nuclear Science and Technology Organization

