# nature medicine

Article

https://doi.org/10.1038/s41591-025-03704-9

# Lutetium-177–PSMA-617 or cabazitaxel in metastatic prostate cancer: circulating tumor DNA analysis of the randomized phase 2 TheraP trial

Received: 5 November 2024

Accepted: 7 April 2025

Published online: 27 May 2025

Check for updates

A list of authors and their affiliations appears at the end of the paper

The prostate-specific membrane antigen (PSMA)-targeted radioligand [<sup>177</sup>Lu]Lu-PSMA-617 is a new standard treatment for metastatic castration-resistant prostate cancer (mCRPC), but predictive genomic biomarkers informing its rational use are unknown. We performed detailed dissection of prostate cancer driver genes across 290 serial plasma cell-free DNA samples from 180 molecular imaging-selected patients with mCRPC from the randomized TheraP trial of [177Lu]Lu-PSMA-617 (n = 97) versus cabazitaxel chemotherapy (n = 83). The primary endpoint was PSA50 biochemical response, with secondary endpoints of progression-free survival (PFS) and overall survival (OS). In this post-hoc biomarker analysis, a low pretreatment circulating tumor DNA (ctDNA) fraction predicted a superior biochemical response (100% versus 58%, P = 0.0067) and PFS (median 14.7 versus 6.0 months; hazard ratio 0.12,  $P = 2.5 \times 10^{-4}$ ) on [<sup>177</sup>Lu]Lu-PSMA-617 independent of predictive PSMA-positron emission tomography imaging parameters, although this benefit did not extend to OS. Deleterious PTEN alterations were associated with worse PFS and OS on cabazitaxel, whereas ATM defects were observed in select patients with favorable [177Lu]Lu-PSMA-617 outcomes. Comparing pretreatment and progression ctDNA revealed population flux but no evidence that alterations in individual mCRPC genes (or FOLH1) are dominant causes of acquired [177Lu]Lu-PSMA-617 or cabazitaxel resistance. Our results nominate new candidate biomarkers for [177Lu] Lu-PSMA-617 selection and ultimately expand the mCRPC predictive biomarker repertoire. We anticipate our ctDNA fraction-aware analytical framework will aid future precision management strategies for [177Lu]Lu-PSMA-617 and other PSMA-targeted therapeutics. ClinicalTrials.gov identifier: NCT03392428.

🖂 e-mail: ian.davis@monash.edu; michael.hofman@petermac.org; arun.azad@petermac.org; alexander.wyatt@ubc.ca

Prostate-specific membrane antigen (PSMA)-targeted radioligand therapy is the most promising new therapy class in advanced prostate cancer, spurred by the approval of lutetium-177 [177Lu]Lu-PSMA-617 (LuPSMA) for PSMA-positive metastatic castration-resistant prostate cancer (mCRPC). We previously reported results from TheraP. a randomized phase 2 trial comparing LuPSMA with cabazitaxel in progressive mCRPC following docetaxel chemotherapy<sup>1,2</sup>. LuPSMA achieved significantly higher biochemical and objective response rates, longer progression-free survival (PFS) and improved quality of life<sup>1</sup>, with similar overall survival (OS) outcomes to cabazitaxel<sup>2</sup>. The phase 3 registrational VISION study of LuPSMA plus standard-of-care versus standard-of-care alone in mCRPC demonstrated superior outcomes for LuPSMA<sup>3</sup>. Expansion of approved indications is likely as PSMA radioligand therapy continues to be tested in early- and late-stage prostate cancer, both as monotherapy and in combination. There is a pressing need to develop personalized strategies based on contemporaneous disease to rationalize selection of LuPSMA versus other life-prolonging systemic therapies.

Molecular imaging provides real-time insights into disease biology and shows potential for enhancing outcome stratification in patients receiving LuPSMA<sup>4</sup>. Prespecified analysis in TheraP and exploratory analysis in VISION corroborated high PSMA tumor uptake (mean standardized uptake value (SUVmean)  $\geq$ 10) to enrich for deep and durable LuPSMA responses<sup>56</sup>. Metabolic tumor volume (MTV) as measured by 2-[<sup>18</sup>F]fluoro-2-deoxy-D-glucose (FDG) positron emission tomography (PET) is strongly prognostic for OS in patients treated with cabazitaxel or LuPSMA<sup>2,5</sup>. Furthermore, a subset of patients with low PSMA uptake and/or 2-[<sup>18</sup>F]FDG-discordant disease experience disproportionately poor outcomes<sup>2,7</sup>, and were excluded from the TheraP study. Collectively, these imaging features form the foundation for developing a biomarker-informed treatment selection framework in patients potentially suitable for LuPSMA.

Genomic alterations guide targeted treatment selection in multiple solid cancers. In mCRPC, alterations in DNA repair genes inform use of poly(ADP-ribose) polymerase inhibitors (PARPi)<sup>8</sup> and immune checkpoint inhibitors<sup>9</sup>. Genomic testing in mCRPC traditionally relied upon archival primary tumor tissue specimens<sup>10</sup>, but plasma cell-free circulating tumor DNA (ctDNA) profiling has emerged as a practical means to identify current alterations, including those associated with treatment resistance<sup>11,12</sup>. To date, there are no ctDNA- or tissue-based biomarkers influencing the use of LuPSMA or taxane chemotherapy, although retrospective cohort studies have nominated ctDNA features linked to LuPSMA outcomes<sup>13–17</sup>. However, without a comparator arm, these studies could not resolve predictive from prognostic features. To address this unmet need, we performed an exploratory correlative analysis of ctDNA features from baseline and progression samples from the randomized TheraP trial.

#### Results

#### Study cohort

TheraP (ANZUP 1603; NCT03392428) was an open-label, phase 2 trial that randomized 200 individuals with progressive mCRPC following prior docetaxel to receive LuPSMA or cabazitaxel<sup>1,2</sup>. A total of 91% of participants previously received androgen receptor pathway inhibitors (ARPI) abiraterone and/or enzalutamide (16% received both). Participants were screened with [<sup>68</sup>Ga]Ga–PSMA-11 (PSMA-PET) and 2-[<sup>18</sup>F]FDG-PET (FDG-PET) to select for high PSMA uptake at metastatic site(s) without discordant disease (2-[<sup>18</sup>F]FDG-positive lesion with low or no PSMA uptake)–distinct from trials using PSMA-PET-only eligibility assessment<sup>3,18,19</sup>. Further details are described in the Methods and previous publications<sup>1,2,5</sup>.

In total, 183 patients received at least one dose of LuPSMA or cabazitaxel. Blood samples were collected before treatment in 98% (180 of 183) of patients (Fig. 1a and Extended Data Fig. 1). Patient characteristics and treatment efficacy were similar in participants with

(Supplementary Table 1). Median baseline cell-free DNA (cfDNA) concentration and total yield were 13 ng ml<sup>-1</sup> plasma (interquartile range (IQR) 8.0-41) and 66 ng (IQR 38-199), respectively (Supplementary Table 2). cfDNA underwent deep targeted sequencing using a validated custom prostate cancer research assay<sup>20,21</sup>, enabling allele-specific resolution of somatic mutations, chromosomal aneuploidies, focal copy number alterations and complex structural rearrangements. Synchronous sequencing of matched white blood cell (WBC) DNA allowed discrimination of tumor-specific from germline and clonal hematopoiesis variants. Two baseline cfDNA samples failed sequencing and were excluded from analyses-the remaining 178 samples formed the biomarker population (Extended Data Fig. 1). WBC DNA was unavailable in four patients. Sixty percent (106 of 178) of participants had both baseline and progression blood samples to investigate temporal clonal dynamics and acquired resistance (Fig. 1a). All WBC DNA and progression cfDNA was successfully sequenced (Supplementary Table 2).

pretreatment samples (n = 180) and the overall population (n = 200)

ctDNA fraction (ctDNA%) is an established independent prognostic factor across multiple disease and treatment contexts, serving as a proxy for metastatic disease burden and cancer aggression<sup>20-22</sup>. We measured ctDNA% via genome-wide aneuploidy and somatic mutations (enabling orthogonal validation) using published benchmarked methodology (Supplementary Table 3)<sup>12,23</sup>. For outcomes analysis, participants were stratified into predefined prognostic categories of low or undetected (<2%), medium (2-30%) and high ctDNA% (>30%) as previously described<sup>20,24</sup>. Baseline ctDNA% was similar between treatment arms (P = 0.95, Mann-Whitney U-test) (Fig. 1b). Consistent with a heavily pretreated mCRPC population, median baseline ctDNA% was 28% (IQR: 15-51%, range: 2.1-83%) among the 150 (85%) patients with ctDNA  $\geq 2\%$ -higher than previous trials in ARPI- and/or taxane-naive first-line mCRPC (median ctDNA: 17%)<sup>24</sup> but similar to clinical poor-risk disease (median ctDNA: 24%)<sup>25</sup>. In the TheraP biomarker population (n = 178), higher ctDNA% was expectedly correlated with hematologic and biochemical prognostic markers (Fig. 1c) and attenuated PFS and OS (Fig. 1d).

#### Pretreatment ctDNA fraction predicts differential outcomes

Whole-body quantitative PSMA-PET and FDG-PET parameters can risk-stratify mCRPC receiving LuPSMA<sup>2,5,26</sup>, but no prostate cancer studies have compared molecular imaging features and ctDNA%. To assess the independent biomarker potential of baseline ctDNA% and explore opportunities for integrating with molecular imaging, we first defined the relationship between synchronous ctDNA% and PET imaging parameters. Most volumetric and avidity parameters were co-correlated with ctDNA% (Fig. 1e). Baseline ctDNA% was moderately positively correlated with whole-body PSMA total tumor volume (R = 0.51,  $P = 7.3 \times 10^{-12}$ ) and FDG MTV (R = 0.57,  $P = 1.6 \times 10^{-15}$ ) (Fig. 1e and Extended Data Fig. 2). Patients with high ctDNA% (>30%) had lower median PSMA SUVmean (8.0 versus 10.6 in patients with ctDNA <2%,  $P = 1.24 \times 10^{-4}$ , Mann–Whitney U-test) and were less frequently observed to have PSMA SUVmean ≥10 (16% versus 61%, Fisher's exact test), the latter shown in a prespecified analysis to be predictive for prostate-specific antigen (PSA) response and prognostic for OS (Fig. 1f and Supplementary Table 4)<sup>2,5</sup>. High ctDNA% was also strongly linked to a higher likelihood of  $2 \cdot [^{18}F]FDG MTV \ge 200 ml$ , which is prognostic for PSA response and OS on both LuPSMA and cabazitaxel (Fig. 1f and Supplementary Table 4)<sup>2,5</sup>.

The potential for baseline ctDNA% to inform selection between LuPSMA and another active standard-of-care therapy such as cabazitaxel is incompletely understood. Individuals with low ctDNA% (<2%; representing 16% of biomarker population) had a significantly higher PSA50 response rates (PSA reduction of  $\geq$ 50% from baseline) on LuPSMA compared with cabazitaxel (16 of 16 (100%) versus 7 of 12 (58%); odds ratio (OR) infinite, *P* = 0.0067) (Fig. 2a). This difference in PSA50 response between treatment arms diminished at higher ctDNA% categories, only modestly favoring LuPSMA for medium ctDNA% (OR = 3.2 for 2–30% ctDNA, P = 0.015), with no difference for high ctDNA% (>30%). The differential PSA50 response between treatment arms, as influenced by ctDNA%, remained significant when ctDNA% was analyzed as a continuous variable (interaction P = 0.047).

Baseline ctDNA% provided significantly greater stratification of PFS for LuPSMA compared with cabazitaxel (Fig. 2b; interaction P = 0.032). This was primarily attributed to patients with low ctDNA% disproportionately benefiting from LuPSMA over cabazitaxel, with an 8.7 month increase in median PFS (14.7 versus 6.0 months,  $P = 2.5 \times 10^{-4}$ ), exceeding the overall benefit of LuPSMA in the biomarker-unselected population (Fig. 2b; HR = 0.12 versus 0.63, interaction P = 0.014). High ctDNA% was conversely associated with outcomes comparable with both LuPSMA and cabazitaxel (median PFS 3.0 and 2.8 months for LuPSMA and cabazitaxel, respectively; HR = 1.1, P = 0.79). Among patients with low ctDNA%, baseline PSMA SUV mean was significantly higher in the LuPSMA arm than in the cabazitaxel arm (median 12 versus 9, P = 0.017). Nevertheless, low ctDNA% remained independently predictive for superior PFS on LuPSMA versus cabazitaxel in a multivariable analysis incorporating baseline PSMA SUVmean, the only established predictive response biomarker for LuPSMA (multivariable HR = 0.34, P = 0.029 when dichotomized at 10 (Fig. 2b); multivariable HR = 0.31, P = 0.017 as a continuous variable). Consistent with PSMA-PET and ctDNA% each offering an independent predictive value, combining both parameters further stratified outcomes in patients with both high and low PSMA SUVmean receiving LuPSMA, caveated by relatively small subgroups (Fig. 2c). Baseline ctDNA% was strongly prognostic in the overall biomarker population (Fig. 1d) although not predictive for OS (interaction P = 0.67) across any baseline ctDNA% risk category (Fig. 2d). Collectively, these data suggest that ctDNA% is a candidate predictive and prognostic biomarker for differential response to LuPSMA versus cabazitaxel chemotherapy in patients with molecular imaging-selected mCRPC progressing after docetaxel.

#### ctDNA-derived features of molecular imaging-selected mCRPC

Next, we defined the frequency of genomic driver alterations in evaluable baseline ctDNA samples (Methods). For select clinically relevant prostate cancer genes, we additionally inferred the number of disrupted versus functionally intact alleles by enumerating all independent single-allele defects (mutations, intragenic deletions, structural variants) on a scaffold of local ploidy (Fig. 3a, Methods and Supplementary Table 5). Our assay captured both exons and select introns, enabling characterization of focal intragenic copy alterations and structural variants with intronic breakpoints—alteration classes with established relevance in mCRPC from whole-genome sequencing studies<sup>12,27</sup>.

The most frequently altered genes were AR (68%), TP53 (53%) and PTEN (35%) (Fig. 3b–d). Gene-disrupting structural variants were a substantial mechanism of inactivation in TP53, PTEN and BRCA2 (Fig. 3b and Extended Data Fig. 3). Notably, disruption of all TP53 and PTEN alleles resulting in null status (all copies disrupted, Methods) was observed in 37% and 23% of participants with ctDNA  $\geq$ 2%, respectively (Fig. 3b). Mutational frequencies were consistent with previous ctDNA and metastatic tissue studies in unselected first- and/or second-line

**Fig. 1** | **Study design and baseline clinical genomic correlates. a**, Overview of sample collection and ctDNA genomic correlative analysis strategy in the TheraP study. **b**, Distribution of targeted sequencing-derived ctDNA% in baseline and progression cfDNA samples stratified by treatment arm and compared with published cohorts<sup>24,25</sup>. **c**, Distribution of routine prognostic laboratory values stratified by ctDNA% categories of <2%, 2–30% and >30%. Baseline lactate dehydrogenase data were available in 91 of 178 (51%) patients with baseline cfDNA; all other laboratory values were available in full. **d**, Kaplan–Meier estimates of PFS and OS stratified by baseline ctDNA%. In-set tables show univariable HR from a Cox proportional hazards model. **e**, Correlation matrix showing relationship between ctDNA% (continuous variable) and quantitative

mCRPC<sup>23,24,28</sup>, despite the dual-tracer imaging selection in TheraP (Fig. 3c). Consistent with near-ubiquitous exposure to ARPIs, the AR gene and enhancer locus were perturbed by combinatorial mechanisms including copy gain ( $\geq$ 4 absolute copies; 50% (AR gene), 60% (AR enhancer) in patients with ctDNA  $\geq$ 5%), ligand-binding domain (LBD) mutations (18%), and structural rearrangements predicted to truncate the LBD (23%) (Fig. 3d). Expectedly, LBD mutations were enriched in samples without AR gain (68% versus 32%; P = 0.049, Fisher's exact test), whereas LBD-truncating rearrangements were more common in samples with AR amplification  $(37\% \text{ in } \ge 8 \text{ copies versus } 19\% \text{ in } < 8 \text{ copies;})$ P = 0.025, Fisher's exact test)<sup>23,24</sup>. AR gene and enhancer copy number were highly correlated (Pearson's r = 0.77;  $P = 2.3 \times 10^{-28}$ ). In total, 46 of 150 (31%) patients with ctDNA  $\geq$ 2% harbored deleterious germline and/ or somatic alterations in ≥1 DNA damage repair (DDR) gene. most commonly in BRCA2 (7%), ATM (7%) and CDK12 (7%)-CDK12 and ATM were mostly mutually exclusive with TP53 alterations (Fig. 3e). Fifty-nine percent of evaluable samples showed evidence of whole-genome duplication (WGD). Alteration frequency was balanced across treatment arms (Supplementary Table 6).

Next, we intersected PSMA SUVmean and FDG MTV with the most prevalent genotypes. *PTEN* alterations were linked to a 14% reduction in PSMA SUVmean expression (P = 0.026, Mann–Whitney *U*-test), but a 95% increase in FDG MTV (P = 0.0062, Mann–Whitney *U*-test) (Fig. 3f and Extended Data Fig. 4), the latter compatible with phosphatidylinositol-3-kinase (PI3K) pathway upregulation mediating increased glycolysis<sup>29</sup>. These associations persisted after accounting for the strong effect of ctDNA% on both parameters (Fig. 1f). We observed no association between PSMA SUVmean and alteration status in *TP53, AR* or other common driver alterations (Fig. 3f–h).

#### Biomarker utility of baseline genomic alterations

Genomic alterations in ctDNA are linked to outcomes in early mCRPC treated with ARPl<sup>24,25,30-33</sup>. To explore these associations in the clinically advanced TheraP population (both treatment arms combined), we intersected clinical outcomes with baseline genomic features among three most frequently altered driver genes: *TP53, AR* and *PTEN*, while separately stratifying individuals with ctDNA <2% in whom somatic alteration status was not derived. *TP53* alterations were associated with significantly worse PFS and OS, whereas neither *PTEN* nor *AR* alterations were strongly prognostic in the ctDNA ≥2% population (Extended Data Figs. 5 and 6), contrasting earlier studies investigating ARPI outcomes in early mCRPC<sup>24,25,30-33</sup>. Supplementary Table 7 summarizes the prognostic relevance of less frequently altered genes.

Across clinical subgroups, neither treatment demonstrated a distinct advantage for PSA50 response, PFS or OS, consistent with the overall biomarker population in which LuPSMA generally showed better outcomes except for OS (Extended Data Fig. 7). Next, we used a gated two-tiered hypothesis testing strategy to understand whether selected high-prevalence ( $\geq 10\%$ ) genomic alterations predict differential treatment outcomes: first testing binary alteration presence or absence (any pathogenic alteration; excluding monoallelic deletions), then stratifying by compound alteration status (Methods and Supplementary Table 5). To address the confounder of ctDNA% (Figs. 1d

PSMA-PET and FDG-PET imaging parameters. Spearman's rho is annotated. Asterisks indicate correlations between variables with *P* values <0.05, adjusted for multiple hypothesis testing using the Bonferroni correction ( $\alpha = 0.05$ , m = 21 hypotheses). **f**, Distribution of PSMA SUVmean and FDG MTV stratified by baseline ctDNA% category. Horizontal dashed lines represent previously established clinically relevant thresholds for high PSMA expression (SUVmean  $\geq 10$ ) and high FDG MTV ( $\geq 200$  ml)<sup>5</sup>. *P* values reflect two-sided Mann–Whitney *U*-tests adjusted for multiple hypothesis testing using the Bonferroni correction ( $\alpha = 0.05$ , m = 3 hypotheses). C, cycle; MAF, mean allele fraction; mPFS, median progression-free survival; mOS, median overall survival; NR, not reached; Ref, reference; TTV, total tumor volume; Tx, treatment.





**Fig. 2** | **Clinical outcomes by pretreatment ctDNA%. a**, Waterfall plots of best PSA response stratified by baseline ctDNA category for patients allocated to cabazitaxel or LuPSMA (mCRPC). Summary bar plots (right) represent the proportion of patients who experienced a PSA50 and PSA90 response, stratified by treatment arm. Error bars denote the Clopper–Pearson exact 95% CI for binomial proportions. *P* values reflect two-sided Fisher's exact tests comparing the proportion of patients achieving each type of PSA response across ctDNA% categories. Forest plots show post-hoc sensitivity analyses for PSA50 and PSA90 responses according to ctDNA% category. Here and in the PFS forest plot in **b**, the 'All patients' category represents the entire biomarker population with baseline cfDNA passing quality control (*n* = 178). **b**, Kaplan–Meier estimates of PFS stratified by baseline ctDNA% categories in the biomarker-evaluable population (*n* = 178 total; *n* = 82 and *n* = 96 randomized to cabazitaxel and LuPSMA, respectively). In-set tables show univariable HR from a Cox proportional hazards

and 2 and Extended Data Figs. 3 and 4), we focused on patients with  $\geq$ 2% ctDNA, and adjusted for ctDNA% as a continuous covariate in multivariable analyses.

*PTEN* alterations were associated with a higher PSA50 response rate (58% versus 33%; OR = 2.8, P = 0.097) and modest PFS improvement on LuPSMA versus cabazitaxel (cross-arm comparison, median 3.4 versus 1.7 months; HR = 0.55, P = 0.049) (Fig. 4a and Supplementary Table 8), with an interaction test P value of 0.092 between treatment arm and *PTEN* status in individuals with detected ctDNA (Fig. 4b). This difference among participants with altered *PTEN* was driven by model. The left-most forest plot shows post-hoc sensitivity analyses for PFS according to ctDNA% categories. The right-most forest plot shows an interaction test between treatment arm (reference category cabazitaxel arm) and ctDNA% category (reference category ctDNA >30%) in the entire biomarker population (n = 178), with an additional covariate of PSMA SUVmean (dichotomized at  $\geq 10$ or <10). **c**, Top, waterfall plots of best PSA response and Kaplan–Meier estimates of PFS in participants receiving LuPSMA with PSMA SUVmean  $\geq 10$  stratified by ctDNA% (<2% versus  $\geq 2\%$ ). Bottom, in-set table shows PSA response percentage and univariable HR from a Cox proportional hazards model by PSMA SUVmean ( $\geq 10$  and <10) and ctDNA% (<2% and  $\geq 2\%$ ). **d**, Kaplan–Meier estimates of OS stratified by baseline ctDNA% category in the biomarker-evaluable population (n = 178 total; n = 82 and n = 96 randomized to cabazitaxel and LuPSMA, respectively). In-set tables show univariable HR from a Cox proportional hazards model. All forest plots (**a**, **b** and **d**) show HR and 95% CI.

poor outcomes on cabazitaxel (per-arm comparison: HR = 2.0 for *PTEN*-altered among patients with ctDNA  $\geq 2\%$ , P = 0.016), whereas LuPSMA outcomes did not differ by *PTEN* status (per-arm comparison: HR = 1.1 for *PTEN*-altered among patients with ctDNA  $\geq 2\%$ , P = 0.82) (Fig. 4b,c and Supplementary Table 9). Importantly, the relationship between *PTEN* status and PFS was consistent across *PTEN* alteration subgroups (for example, total allelic inactivation versus any alteration) and mirrored when analyzing OS: patients with altered *PTEN* receiving LuPSMA had a 6.1-month improvement in median OS relative to cabazitaxel (HR = 0.39, P = 0.022) (Fig. 4b and Supplementary Table 8).

The positive interaction between treatment and *PTEN* status for OS was preserved after adjusting for ctDNA% (continuous covariate) and PSMA SUVmean  $\geq 10$  (Fig. 4b). Taken together, these results suggest that LuPSMA is superior to cabazitaxel in *PTEN*-altered mCRPC.

*TP53* alterations were linked to poor PFS and OS (but not PSA50 response) independent of treatment or *TP53* allelic state (Fig. 4a–c and Supplementary Tables 8 and 9). No classes of *AR* alteration were associated with upfront resistance or differential outcomes on LuPSMA or cabazitaxel–consistent with these agents' mechanism of action not directly targeting AR signaling and earlier genomic correlative studies in taxane trials<sup>34</sup> (Supplementary Tables 8 and 9). Recognizing that *AR* amplifications represent a continuum, we observed that participants with  $\geq 16AR$  copies (top quartile) were associated with modestly shorter OS, but not PFS on LuPSMA relative to cabazitaxel when compared against all other quartiles combined (OS HR = 1.9, *P* = 0.025) (Fig. 5a and Extended Data Fig. 6). Overall, these data suggest that *AR* amplification status is not a candidate biomarker to guide treatment selection between LuPSMA and cabazitaxel.

Compromised response to DNA damage is hypothesized to predict LuPSMA outcomes<sup>16,17</sup>. We qualitatively explored outcomes in patients with alterations in DDR genes. Among participants with DDR alterations (n = 46) (Fig. 3e), the deepest (biochemical) and most durable responses to LuPSMA coincided with deleterious ATM (86% PSA50 response rate) and BRCA2 (75% PSA50 response rate) alterations, including in patients with low PSMA SUVmean (Fig. 5b and Extended Data Fig. 8). Notably, two individuals with ATM null status experienced exceptional benefit from LuPSMA, with on-treatment PSA declining to undetectable and PFS of 30.2 and 23.1 months, respectively (although five patients with ATM alterations had unremarkable outcomes on LuPSMA, aligning with median PFS of all ctDNA  $\geq$  2% patients). Conversely, several patients with CDK12 mutations benefited from cabazitaxel (only one of eight patients had primary biochemical progression), while all three patients with CDK12-mutated mCRPC progressed on LuPSMA before the median PFS (3.5 months; ctDNA ≥2% subset) (Fig. 5b). Outcomes appeared poor in the five individuals with DNA mismatch repair defects. Our anecdotal observations support further investigation of select DNA repair genes (particularly ATM) as biomarkers of LuPSMA sensitivity or resistance.

# Established mCRPC driver genes rarely mediate acquired LuPSMA resistance

To explore acquired resistance, we compared baseline and progression ctDNA in participants with ctDNA  $\geq 2\%$  at both timepoints (85 of 106 sample pairs) (Fig. 6a and Extended Data Fig. 1). Mutational presence was highly concordant: 95% (382 of 402) of evaluable baseline mutations were redetected at progression after controlling for temporal fluctuations in ctDNA% and sequencing depth stochasticity that may precipitate false discordance (Fig. 6b and Methods). The copy number status of *TP53*, *PTEN* and *RB1* appeared stable over treatment (Extended Data Fig. 9). Genome-wide aneuploidy landscapes were highly correlated

**Fig. 3** | **Genomic landscape of docetaxel and ARPI-treated mCRPC. a**, Overview of targeted panel assay design used to sequence samples, with an exemplar of data generated from each patient sample (right). **b**, Baseline alteration frequency in key prostate cancer genes in patients with ctDNA  $\ge 2\%$ , showing the presence of any alteration (top) and total allelic inactivation (null) status (bottom). For *TP53* and *PTEN*, a breakdown of combinatorial mechanisms resulting in null status is provided. **c**, Mutational frequency of recurrent somatic and germline alterations compared with published cohorts<sup>24,25,28</sup>. Cross-cohort comparisons of *AR* gain were restricted to samples with  $\ge 5\%$  ctDNA given the challenges of reliably detecting *AR* gain in low ctDNA% (no post-hoc subsetting was performed on the tissue cohort). **d**, Distribution of absolute *AR* copy number and other established mechanisms of *AR* activation (*AR* genomic structural rearrangements and LBD point mutations) in 151 baseline samples with  $\ge 2\%$  ctDNA. Dotted gray lines at four *AR* copies represent the threshold used to define an *AR* gain. **e**, Breakdown of 46 patients with a germline and/or somatic alteration in  $\ge 1$  DNA damage

(Pearson r = 0.91, P < 0.001 in sample pairs with  $\ge 20\%$  ctDNA) (Fig. 6c). These data suggest that neither LuPSMA nor cabazitaxel substantially reshapes the established mCRPC genomic landscape, and are consistent with the premise that most driver defects-even those in the post third-line treatment setting-originate before metastatic dissemination<sup>12,35,36</sup>.

We next searched for quantitative changes in per-patient mutational variant allele frequencies (VAF; adjusted for ctDNA% and copy number) indicative of treatment-induced clonal selection (Methods)<sup>23,37</sup>. Protein-altering mutations detected de novo at progression on LuPSMA were rare but in some cases affected TP53 (n = 2). RB1 (n = 1), PTEN (n = 1) and AR (n = 1) (Fig. 6b). No treatment-emergent alterations were detected in the FOLH1-coding region (encodes PSMA). Temporally discordant mutations were predominantly subclonal in contrast to shared mutations (median cancer cell fraction (CCF) 0.19 versus 0.81, P < 0.001), largely inconsistent with a complete clonal sweep (Fig. 6b). Nevertheless, most (66%) participants with ctDNA% ≥5 in both samples displayed some evidence of (sub)clonal flux on a backdrop of shared and temporally static truncal driver alterationsmainly manifesting as shifts in adjusted VAF (rather than mutation emergence or disappearance), AR copy number or perturbations in genome-wide aneuploidy, suggesting that LuPSMA and cabazitaxel continue to sculpt the metastatic population ecosystem.

Importantly, after incorporating all evidence, no driver gene alterations were enriched during either LuPSMA or cabazitaxel treatment (Fig. 6a–e). Although 28% of patients had significant changes in ctDNA%-adjusted *AR* copy number, inconsistent directionality suggests broader (sub)clonal shifts rather than direct selection for augmented *AR* genotypes, contrasting established evolution patterns during sequential ARPI<sup>12,23</sup>. There was no significant difference in *AR* gene copy number (median copies at baseline versus progression: (4.6 versus 8.1, P = 0.6 (LuPSMA); 3.5 versus 3.8, P = 0.9 (cabazitaxel)) or enhancer (6.6 versus 9.0, P = 0.5; 6.3 versus 4.4, P = 1.0), nor any enrichment for *AR* LBD mutations across timepoints (Fig. 6b,d,e). These results demonstrate that although population shifts occasionally favor clinically relevant genes (for example, *RB1*, *TP53*), treatment-induced selection for resistant clones is not singularly mediated through any common mCRPC driver genotype.

Finally, we dichotomized individuals based on evidence supporting a temporal population shift, incorporating quantitative changes in mutation clonality, *AR* copy number and genome-wide aneuploidy (Fig. 6a and Methods). Patients with a population shift had deeper PSA responses (median -50.3% versus -13.7%, *P* = 0.093) and lower frequency of primary PSA rise (23.4\% versus 45.8\%, *P* = 0.063), likely because of the depletion of treatment-sensitive populations and subsequent repopulation with genotypically distinct resistant clones (Fig. 6f). A weaker biochemical response in individuals without clonal shifts is compatible with a population ecosystem primed for primary resistance.

repair (DDR)-related gene(s), showing co-occurrence patterns relative to other DDR genes and select non-DDR drivers (*TP53* and *PTEN*). **f**, Distribution of PSMA SUVmean (top) and FDG MTV (bottom) stratified by *PTEN* (left) and *TP53* (right) alteration status in patients with baseline ctDNA  $\geq 2\%$  (n = 150). Dashed lines represent previously established clinically relevant thresholds for high PSMA expression (SUVmean  $\geq 10$ ) and high FDG MTV ( $\geq 200$  ml)<sup>5</sup>. Boxplots are accompanied by linear regression models incorporating genomic alteration status and/or ctDNA%, with the respective molecular imaging parameter constituting the independent variable. The multivariable *P* value represents a model that includes both dependent variables: alteration status and ctDNA%. **g.h**, Distribution of PSMA SUVmean stratified by *AR* alteration category (**g**) and alteration status in commonly affected DDR genes plus *SPOP* (MATH-domain only) and *FOXAI* (**h**). Dashed lines represent the threshold for high PSMA expression (SUVmean  $\geq 10$ ). del., deletion; KDE, kernel density plot; Q value, ; SV, structural variant; TTV, total tumor volume; w/o, without.





**Fig. 4** | **Clinical outcomes by** *PTEN, TP53* and *AR* alteration status. a, Forest plots show post-hoc sensitivity analyses for PFS (left) and OS (right) according to baseline *PTEN, TP53* and *AR* alteration status in samples with ctDNA  $\geq 2\%$ . The 'All patients' category includes those in the biomarker population with baseline ctDNA  $\geq 2\%$  (n = 150). *AR* copy number thresholds of 4 and 16 were chosen because they represented the median and top quartile absolute *AR* copy number, respectively. HRs for each subgroup comparison represent univariable Cox proportional hazards models. Formal statistical testing was not performed for all subgroup comparisons if the overarching category (any alteration in *PTEN, TP53* and *AR*) was not statistically significant at an unadjusted *P* value <0.05. The exception to this was *PTEN* alterations for the OS outcome, which was formally tested because PFS was statistically significant. **b**, Kaplan–Meier

estimates of PFS and OS stratified by any *PTEN* alteration (left), *PTEN* null (middle) and any *TP53* alteration (right) status. Interaction test represents the treatment interaction with the genomic alteration of interest. Adjusted multivariable interaction *P* values were generated only if univariable interaction testing showed a *P* value of <0.05. **c**, Per-arm forest plots for PFS and OS for *PTEN* and *TP53* alterations. Each plot compares alteration detected versus alteration not detected (that is, mutant versus wild-type) in each treatment arm, stratified by different ctDNA% thresholds (all patients, patients with ctDNA  $\geq 2\%$  (*n* = 150) and patients with ctDNA  $\geq 20\%$  (*n* = 101) and allelic status (null versus any alteration)). No formal statistical testing is performed. All forest plots (**a**, **c**) show HR and 95% Cl. CN, copy number; mo, months.

#### Discussion

Our clinicogenomic analysis leveraging 290 blood samples from the prospective randomized TheraP study nominates new candidate predictive biomarkers to inform LuPSMA versus cabazitaxel treatment selection. These findings are reinforced by our incorporation of a more extensive spectrum of somatic alterations than previously studied, while controlling for the confounding effect of ctDNA% on both alteration detection sensitivity and prognosis<sup>38</sup>. Crucially, the real-world significance of our findings is underscored by the cabazitaxel control arm—the established alternative treatment option in this setting<sup>39</sup>—positioning our study as a benchmark for objective evaluation of biomarker performance in future studies. Our work endorses ctDNA

genotyping as a complement to current PSMA-PET and FDG-PET selection for LuPSMA, and provides a framework for investigating circulating biomarkers for PSMA-targeting radionuclide therapeutics in clinical development (for example, actinium-225 or terbium-161)<sup>40,41</sup>.

Pretreatment ctDNA% strongly stratified differential biochemical and PFS outcomes, with ctDNA% showing predictive potential to inform treatment selection in mCRPC. These findings also validate and extend previous noncomparative observational studies in LuPSMA-treated cohorts indicating that ctDNA% is prognostic<sup>13,14</sup>, reaffirming its broader prognostic utility across mCRPC treatment contexts<sup>20–22</sup>. Patients with undetected pretreatment ctDNA unexpectedly experienced an 88% lower risk of progression with LuPSMA





**Fig. 5** | **Clinical outcomes by** *AR* **copy number and DDR defects. a**, Kaplan–Meier estimates of PFS and OS stratified by *AR* absolute copy number quartiles (top: Q1–4; bottom Q1–3 versus Q4) in patients with ctDNA  $\geq$ 5%. **b**, Swimmers plot of PFS for 46 patients with evidence of a germline and/or somatic alteration in  $\geq$ 1 DDR gene. Patients are grouped by DNA repair gene category: *ATM*-defective, *BRCA*1/2-defective, *CDK*12-defective, MMR-defective and Other. In each DNA repair gene-defective category, patients are ordered by PFS (longest to shortest), without accounting for censoring. Patients with >1 DDR gene alteration were

grouped by their primary gene alteration, with the secondary gene alteration in parentheses (Supplementary Table 5); no patients had >2 DDR gene alterations. One patient in the *ATM*-altered category receiving cabazitaxel experienced a progressive event before recording a single on-treatment PSA value, and was therefore classified as not experiencing a PSA response in the summary bar plots. The vertical dashed line represents the median PFS of the entire biomarker-eligible ITT population with ctDNA>2% (regardless of biomarker status), and is intended to serve as a qualitative visual benchmark. CN, absolute copy number.

compared with cabazitaxel, identifying a group of exceptional responders that cannot be predicted by high PSMA tumor uptake alone. Intriguingly, when this favorable-risk undetected ctDNA subgroup is excluded, the magnitude of PFS benefit with LuPSMA over cabazitaxel is less pronounced (PFS HR = 0.64 and 0.88 for the all-comers biomarker population and ctDNA  $\geq 2\%$ , respectively). Although the primary determinants of this relationship cannot be definitively established here, they may be attributable to biological characteristics captured by low ctDNA% disease, including low tumor burden, reduced proliferative capacity and higher PSMA avidity.

Despite these salient findings, undetected ctDNA encompassed a small subset of participants in TheraP (16% of biomarker population), potentially limiting broad utility in heavily pretreated disease. Furthermore, disparate outcomes favoring LuPSMA in those with undetected ctDNA did not translate to OS benefit. In contrast to the TheraP population, ctDNA is undetected in 20–43% of ARPI and/or taxane-naive mCRPC patients<sup>24,25,42</sup>. Recent trials demonstrating clinically meaningful LuPSMA efficacy in earlier disease<sup>19,43</sup> may clarify the role of ctDNA quantification in influencing treatment prioritization. Importantly, the potential for ctDNA% to guide rational treatment selection is not without precedent, as previously observed in the context of sequential ARPI<sup>23</sup>. Patients with low ctDNA% appear most likely to benefit from sequential ARPI–a strategy that rarely provides durable disease control in unselected mCRPC<sup>44</sup>–but its predictive utility (compared with docetaxel) will be clarified in a prospective ctDNA%-guided trial (NCT04015622). Notwithstanding the need for validation, our data strongly suggest that low ctDNA% should prioritize ARPI- and docetaxel-exposed mCRPC for treatment with LuPSMA over cabazitaxel, and should encourage future PSMA radioligand therapy trials to use ctDNA% as a stratification factor or as an enrichment strategy for selecting likely responders.

Assessing LuPSMA eligibility in mCRPC currently relies on detecting PSMA-positive disease via PET. Imaging-based selection offers clear strengths, including precise spatial delineation of tumor burden across anatomical regions, characterization of tumor heterogeneity, as well as provision of crucial metrics of target abundance. The culmination of these molecular imaging elements has expanded our understanding of how tissue tropism impacts LuPSMA efficacy<sup>6,45</sup>, and accelerated development of risk stratification models in patients receiving LuPSMA<sup>46</sup>. Nevertheless, anticipated expansion of indications for PSMA-targeted radioligand therapy may strain efforts to broaden global access to both PET imaging and theranostic treatment alike<sup>47</sup>. Pending validation in independent cohorts, our ctDNA% data support the hypothesis that ctDNA testing may be a complementary triage tool alongside PSMA-PET imaging when evaluating LuPSMA candidacy. Existing validated commercial assays capable of measuring ctDNA%<sup>48</sup> are now widely available (via mail-in testing), with results consistently delivered within 2–4 weeks<sup>49,50</sup>. Furthermore, ctDNA testing can offer additional genomic alteration status with broader relevance for treatments beyond PSMA radioligand therapy<sup>38</sup>. Future studies should explore approaches to implementing ctDNA% estimation into clinical workflow, balancing issues around resourcing, access and efficiency.

The relationship between genomic variables and molecular imaging indices in patients with prostate cancer has not previously been systematically investigated. ctDNA% correlated with volumetric parameters (for example, FDG MTV), as previously reported in lung cancer<sup>51</sup>. Intriguingly, ctDNA% was inversely correlated with PSMA SUVmean, possibly due to greater disease heterogeneity resulting in lower mean avidity. Preclinical work demonstrates that PSMA catabolism activates downstream PI3K signaling<sup>52</sup>. In our cohort, PTEN defects correlated with modestly lower PSMA SUVmean independent of ctDNA%potentially implying that activation of downstream effectors of the PSMA-PI3K signaling cascade may trigger reciprocal negative feedback on PSMA expression-but contrasts earlier data indicating that PTEN and PSMA tissue IHC expression are not correlated<sup>52</sup>. Overall, our findings suggest that mCRPC driver defects (in AR, TP53, and DNA repair genes) are unlikely to serve as a strong proxy for PSMA-PET parameters, notwithstanding the minor relationship between PTEN and PSMA SUVmean warranting deeper investigation.

In our imaging-selected docetaxel-exposed patients treated with cabazitaxel, PTEN alterations were associated with significantly worse time to treatment failure and survival compared with PTEN wild-typeindependent of ctDNA% and PSMA SUVmean-driving the apparent differential benefit of LuPSMA over cabazitaxel for PTEN-altered patients. This juxtaposes previous noncomparative series linking PI3K alterations to poor outcomes on LuPSMA<sup>13-15</sup>. In contrast to our work, these studies were unable to resolve the compounding prognostic effects of ctDNA% and genomic alteration status, reinforcing that detection of genomic alterations in cfDNA incorporates the independent prognostic influence of ctDNA%<sup>38</sup>. Poor PFS and OS on cabazitaxel in patients with *PTEN* deficiency is potentially compatible with its role as a negative prognostic factor in mCRPC<sup>53</sup>, although it remains mechanistically unclear why PTEN alterations did not also stratify LuPSMA-treated patients. Intriguingly, ATM alterations were anecdotally linked to highly durable LuPSMA benefit in select patients, corroborating evidence implicating ATM deficiency in radiosensitivity<sup>54</sup>. Given the emerging consensus that PARPi are ineffective in ATM-deficient mCRPC<sup>55</sup>, our result positions LuPSMA as a potential alternative treatment. Importantly, AR alterations were not associated with differential outcomes. Together with the lack of correlation with synchronous PSMA

Fig. 6 | Resistance alterations. a, Summary of per-patient evidence for three categories of population shift (mutational, AR copy number and genome-wide large-scale aneuploidy) in 106 patients with paired baseline and progression cfDNA. Sample pairs are grouped by ctDNA% sufficiency for different analyses investigating temporal somatic changes. b, Mirrored bar plot of coding mutation VAF in patients with  $\geq 2\%$  ctDNA in both timepoints where a coding mutation was detected in targeted genes at either timepoint (n = 83 patients). ctDNA% is adjusted for ctDNA% and absolute copy number (CCF) at baseline (top) versus progression (bottom). Each bar (mutation) is colored by gene and grouped by detection at timepoints and significant CCF change. Boxplots summarize CCFs of mutations detected at both timepoints (two data points per mutation, one for each timepoint) versus those detected only at one timepoint (one data point per mutation). The P value reflects a two-sided Mann-Whitney U-test. c, Top, summary plots of genome-wide heterozygous SNP backbone coverage LR and HSAF profiles in baseline and progression, aggregated across all patients with evaluable copy number models and  $\geq 20\%$  ctDNA at both timepoints (n = 44). Bottom, per-patient genome-wide traces of significant changes in absolute copy number (red and blue) and/or heterozygous SNP allele fractions (gray) between

SUVmean and absence of selection for augmented AR genotypes during LuPSMA treatment, these data challenge earlier suggestions that PSMA is directly regulated by the AR and/or suggest this relationship is less prominent in ARPI-resistant mCRPC<sup>56-58</sup>. The neutral prognosis of AR-altered mCRPC on cabazitaxel and LuPSMA contrasts with that observed in the first- and second-line ARPI setting, where pretreatment AR genomic structural rearrangements and high-level amplifications portend upfront resistance<sup>24,34,59</sup>. Given recent positive results for LuPSMA trials in earlier-line mCRPC (for example, SPLASH, PSMAfore)<sup>19,60</sup>, the apparent indifference of LuPSMA to AR genotype may inform eventual LuPSMA monotherapy use in settings in which ARPI is a competing alternative. Collectively, our correlative results offer renewed therapeutic decision-making strategies for mCRPC genomic subtypes (for example, PTEN, ATM, CDK12) that have eluded previous precision oncology efforts<sup>55,61,62</sup>, but will require validation in other large cohorts and treatment contexts. Recognizing that distinct classes of genomic alteration can differentially impact protein function, and that functional gene dosage can influence clinical outcomes (for example, BRCA2 homozygous versus heterozygous loss in the context of PARPi<sup>63</sup>), we urge future translational efforts to investigate compound allelic status utilizing the methodological blueprint herein.

No recurrent acquired resistance mechanism(s) to LuPSMA emerged in our analysis, compatible with the general expectation that resistance to anticancer agents is often heterogeneous and polyclonal. Inactivating surface receptor gene defects can precipitate treatment failure in other cancers (for example, TROP2 vis-à-vis sacituzumab govitecan in breast cancer<sup>64</sup>), but no acquired FOLH1 mutations were detected at progression on LuPSMA-compatible with recrudescence of PSMA-positive disease as a predominant progression pattern on LuPSMA<sup>65</sup>. There were no consistent directional changes in AR genotype suggestive of selection (positive or negative) during either treatment, indicating that further AR signaling perturbation is unlikely to be a dominant driver of acquired resistance. Frequent and occasionally pronounced temporal fluctuations in AR genotype plausibly reflect genetic drift driven by selection of other (possibly undetected) (epi) genotypes, compatible with previous literature indicating that the majority of mCRPC intrapatient clonal diversity is concentrated in the AR locus<sup>12,23,35</sup>. The modestly increased AR copy number during both therapies was not statistically significant, but would be compatible with ongoing selective pressure from the concomitant androgen deprivation therapy received by all patients.

Three patients harbored evidence for positive selection of *TP53* and/or *RB1* defects during LuPSMA, raising the possibility that these genes facilitate resistance in a minority of cancer clones and/or patients. Whether *TP53* and *RB1* defects functionally drive acquired LuPSMA resistance or merely reflect clonal flux mediated via selection

timepoints. Only patients with five or more significant genomic changes are visualized (Methods). d, Absolute copy number and 95% CI (Methods) of the AR gene at baseline and progression in patients with  $\geq$ 5% ctDNA in both timepoints (n = 71), stratified by treatment arm. e, Aggregated mean absolute AR copy number of patients with  $\geq$ 5% ctDNA in both timepoints, stratified by treatment arm, across the AR enhancer, AR gene body and flanking regions. Each dot represents a targeted sequencing probe. 95% CIs are shown in gray for baseline and red for progression. f, Upper left, schematic of relationship between PSA response and clonal shift. Best PSA response waterfall plot (n = 71 patients) is stratified by the presence of a population shift (defined as a shift in mutational profile, AR copy number and/or large chromosomal copy number changes) (Methods). Lower, three case studies are highlighted with their evidence (or lack thereof) of population shift (mutations in mirrored bar plots, AR CN and 95% Cl in whiskers below, and genome-wide aneuploidy on the right). Coding and noncoding mutations are annotated in dark gray and light gray text respectively. Evidence of change between timepoints is highlighted in pink and red; chr, chromosome; mut., mutation; MWU, Mann-Whitney U-test.



of other biological features is unclear from our data. Nevertheless, TP53 and RB1 are established drivers of lineage plasticity during ARPI<sup>66</sup>, and intriguingly an epigenomic study described a case of transdifferentiation to neuroendocrine mCRPC during progression on LuPSMA<sup>67</sup>. Neuroendocrine prostate cancer is linked to lower PSMA avidity and higher likelihood of 2-[18F]FDG-discordant disease45,58,68, suggesting RB1-mediated LuPSMA resistance may be more common in patients screened using PSMA-PET alone. Collectively, these data merit further investigation of lineage dysregulation as a possible LuPSMA resistance mechanism. Quantifying spatial patterns of PSMA (with or without FDG) uptake at LuPSMA progression-plus synchronous interrogation of (epi)genomic tumor features using broader sequencing approaches (for example, deep whole-genome sequencing)-will help discover mechanisms of emergent LuPSMA resistance and is feasible in contemporaneous clinical trial datasets including ENZA-p and PRINCE<sup>43,69</sup>.

Our study has several limitations. First, molecular imaging eligibility for TheraP enriched for high PSMA tumor uptake without 2-[18F] FDG-discordant disease, differing from the registrational VISION trial for LuPSMA<sup>3</sup>. The biological implications of this stringent imaging preselection may limit the generalizability of our findings to settings in which FDG-PET is not used to evaluate PSMA radioligand therapy candidacy. Encouragingly, the impact of dual-tracer selection on synchronous ctDNA%-imaging and genomic-imaging biological correlatives is being addressed in the ENZA-p trial, in which all participants underwent dual PSMA-PET and FDG-PET screening, with only the former utilized for study eligibility assessment<sup>43</sup>. Second, observations of differential outcomes by ctDNA% and genomic features may be specific to the comparison of LuPSMA monotherapy and cabazitaxel and should not be indiscriminately extrapolated to other treatment regimens, including other taxane cytotoxics and combination therapies involving LuPSMA. These hypotheses will be explored in the Canadian Cancer Trials Group PR.21 study of LuPSMA versus docetaxel in ARPI-treated mCRPC<sup>18</sup>, as well as in other ongoing studies evaluating LuPSMA combinations<sup>43,69</sup>. Third, TheraP evaluated LuPSMA in late-line mCRPC in which ctDNA is abundant. Studies in earlier disease settings<sup>70,71</sup> should clarify: (1) whether ctDNA% retains predictive significance in a clinical setting marked by a different (lower) ctDNA%-risk distribution; (2) whether additional substratification of the ctDNA<2% subgroup (utilizing assays with greater analytical sensitivity) may offer further outcomes discrimination: and (3) whether genomic alterations in ctDNA remain practical for outcomes prediction and detailed biological research, given that lower ctDNA% constrains resolution of certain biologically relevant alteration classes<sup>38</sup>. Fourth, this work is underpowered to investigate outcomes for low prevalence genomic alterations, most evident in the analysis of DDR genes. Finally, our analysis focuses exclusively on genomic biomarkers (aligning with the current capacities of widely available ctDNA companion diagnostics), but cannot address epigenomic factors, which have been recently implicated in PSMA regulation<sup>45,72</sup>. Multimodal strategies incorporating 5-(hydroxy)methylcytosine sequencing, cfDNA fragmentomic profiling and cell-free chromatin immunoprecipitation may refine and expand predictors of LuPSMA benefit, while more accurately identifying cancers where lineage plasticity contributes to acquired LuPSMA resistance.

We provide a comprehensive evaluation of ctDNA genomic correlatives from the first prospective randomized trial comparing LuPSMA to the active and clinically relevant control of cabazitaxel. Our data, although hypothesis-generating, offer a roadmap for biomarker development efforts for PSMA-targeting radionuclide therapeutics.

#### **Online content**

Any methods, additional references, Nature Portfolio reporting summaries, source data, extended data, supplementary information, acknowledgements, peer review information; details of author contributions and competing interests; and statements of data and code availability are available at https://doi.org/10.1038/s41591-025-03704-9.

#### References

- 1. Hofman, M. S. et al. [<sup>177</sup>Lu]Lu-PSMA-617 versus cabazitaxel in patients with metastatic castration-resistant prostate cancer (TheraP): a randomised, open-label, phase 2 trial. *Lancet* **397**, 797–804 (2021).
- Hofman, M. S. et al. Overall survival with [<sup>177</sup>Lu]Lu-PSMA-617 versus cabazitaxel in metastatic castration-resistant prostate cancer (TheraP): secondary outcomes of a randomised, open-label, phase 2 trial. *Lancet Oncol.* 25, 99–107 (2023).
- 3. Sartor, O. et al. Lutetium-177–PSMA-617 for metastatic castration-resistant prostate cancer. *N. Engl. J. Med.* **385**, 1091–1103 (2021).
- 4. Gafita, A. et al. Predictors and real-world use of prostate-specific radioligand therapy: PSMA and beyond. *Am. Soc. Clin. Oncol. Educ. Book* **42**, 1–17 (2022).
- Buteau, J. P. et al. PSMA and FDG-PET as predictive and prognostic biomarkers in patients given [<sup>177</sup>Lu]Lu-PSMA-617 versus cabazitaxel for metastatic castration-resistant prostate cancer (TheraP): a biomarker analysis from a randomised, open-label, phase 2 trial. *Lancet Oncol.* 23, 1389–1397 (2022).
- Kuo, P. H. et al. Quantitative <sup>68</sup>Ga-PSMA-11 PET and clinical outcomes in metastatic castration-resistant prostate cancer following <sup>177</sup>Lu-PSMA-617 (VISION trial). *Radiology* **312**, e233460 (2024).
- Thang, S. P. et al. Poor outcomes for patients with metastatic castration-resistant prostate cancer with low prostate-specific membrane antigen (PSMA) expression deemed ineligible for <sup>177</sup>Lu-labelled PSMA radioligand therapy. *Eur. Urol. Oncol.* 2, 670–676 (2019).
- 8. de Bono, J. et al. Olaparib for metastatic castration-resistant prostate cancer. *N. Engl. J. Med.* **382**, 2091–2102 (2020).
- 9. Abida, W. et al. Analysis of the prevalence of microsatellite instability in prostate cancer and response to immune checkpoint blockade. *JAMA Oncol.* **5**, 471–478 (2019).
- Hussain, M. et al. Tumor genomic testing for >4000 men with metastatic castration-resistant prostate cancer in the phase III trial PROfound (Olaparib). *Clin. Cancer Res.* 28, 1518–1530 (2022).
- Kwan, E. M., Wyatt, A. W. & Chi, K. N. Towards clinical implementation of circulating tumor DNA in metastatic prostate cancer: opportunities for integration and pitfalls to interpretation. *Front. Oncol.* **12**, 1054497 (2022).
- 12. Herberts, C. et al. Deep whole-genome ctDNA chronology of treatment-resistant prostate cancer. *Nature* **608**, 199–208 (2022).
- Fettke, H. et al. Abstract 5614: Genomic aberrations in circulating tumor DNA (ctDNA) and clinical outcomes from [<sup>177</sup>Lu] Lu-PSMA-617 in metastatic castration-resistant prostate cancer (mCRPC). *Cancer Res.* 83, 5614 (2023).
- 14. Vanwelkenhuyzen, J. et al. AR and PI3K genomic profiling of cell-free DNA can identify poor responders to lutetium-177-PSMA among patients with metastatic castration-resistant prostate cancer. *Eur. Urol. Open Sci.* **53**, 63–66 (2023).
- Crumbaker, M. et al. Circulating tumour DNA biomarkers associated with outcomes in metastatic prostate cancer treated with lutetium-177-PSMA-617. *Eur. Urol. Open Sci.* 57, 30–36 (2023).
- Sartor, O. et al. Prediction of resistance to <sup>177</sup>Lu-PSMA therapy by assessment of baseline circulating tumor DNA biomarkers. *J. Nucl. Med.* 64, 1721–1725 (2023).
- 17. Raychaudhuri, R. et al. Genomic correlates of prostate-specific membrane antigen expression and response to <sup>177</sup>Lu-PSMA-617: a retrospective multicenter cohort study. *JCO Precis. Oncol.* **8**, e2300634 (2024).

- Chi, K. N. et al. CCTG PR21: a randomized phase II study of [<sup>177</sup>Lu]Lu-PSMA-617 verus docetaxel in patients with metastatic castration-resistant prostate cancer and PSMA-positive disease (NCT04663997). J. Clin. Oncol. 40, TPS5110 (2022).
- 19. Morris, M. J. et al. Lu-PSMA-617 versus a change of androgen receptor pathway inhibitor therapy for taxane-naive patients with progressive metastatic castration-resistant prostate cancer (PSMAfore): a phase 3, randomised, controlled trial. *Lancet* **404**, 1227–1239 (2024).
- 20. Fonseca, N. M. et al. Prediction of plasma ctDNA fraction and prognostic implications of liquid biopsy in advanced prostate cancer. *Nat. Commun.* **15**, 1828 (2024).
- 21. Tolmeijer, S. H. et al. Early on-treatment changes in circulating tumor DNA fraction and response to enzalutamide or abiraterone in metastatic castration-resistant prostate cancer. *Clin. Cancer Res.* **29**, 2835–2844 (2023).
- 22. Choudhury, A. D. et al. Tumor fraction in cell-free DNA as a biomarker in prostate cancer. *JCI Insight* **3**, e122109 (2018).
- 23. Annala, M. et al. Evolution of castration-resistant prostate cancer in ctDNA during sequential androgen receptor pathway inhibition. *Clin. Cancer Res.* **27**, 4610–4623 (2021).
- 24. Annala, M. et al. Circulating tumor DNA genomics correlate with resistance to abiraterone and enzalutamide in prostate cancer. *Cancer Discov.* **8**, 444–457 (2018).
- Annala, M. et al. Cabazitaxel versus abiraterone or enzalutamide in poor prognosis metastatic castration-resistant prostate cancer: a multicentre, randomised, open-label, phase 2 trial. *Ann. Oncol.* 32, 896–905 (2021).
- Ferdinandus, J. et al. Prognostic biomarkers in men with metastatic castration-resistant prostate cancer receiving [<sup>177</sup>Lu]-PSMA-617. *Eur. J. Nucl. Med. Mol. Imaging* 47, 2322–2327 (2020).
- 27. Quigley, D. A. et al. Genomic hallmarks and structural variation in metastatic prostate cancer. *Cell* **175**, 889 (2018).
- Abida, W. et al. Genomic correlates of clinical outcome in advanced prostate cancer. *Proc. Natl Acad. Sci. USA* **116**, 11428–11436 (2019).
- 29. Chakraborty, G. et al. The impact of PIK3R1 mutations and insulin-PI3K-glycolytic pathway regulation in prostate cancer. *Clin. Cancer Res.* **28**, 3603–3617 (2022).
- De Laere, B. et al. *TP53* outperforms other androgen receptor biomarkers to predict abiraterone or enzalutamide outcome in metastatic castration-resistant prostate cancer. *Clin. Cancer Res.* 25, 1766–1773 (2019).
- 31. De Laere, B. et al. Androgen receptor burden and poor response to abiraterone or enzalutamide in TP53 wild-type metastatic castration-resistant prostate cancer. *JAMA Oncol.* **5**, 1060–1062 (2019).
- Fettke, H. et al. Combined cell-free DNA and RNA profiling of the androgen receptor: clinical utility of a novel multianalyte liquid biopsy assay for metastatic prostate cancer. *Eur. Urol.* 78, 173–180 (2020).
- Kwan, E. M. et al. Plasma cell-free DNA profiling of PTEN-PI3K-AKT pathway aberrations in metastatic castration-resistant prostate cancer. JCO Precis. Oncol. 5, 622–637 (2021).
- Tolmeijer, S. H. et al. A systematic review and meta-analysis on the predictive value of cell-free DNA-based androgen receptor copy number gain in patients with castration-resistant prostate cancer. *JCO Precis. Oncol.* 4, 714–729 (2020).
- 35. Gundem, G. et al. The evolutionary history of lethal metastatic prostate cancer. *Nature* **520**, 353–357 (2015).
- Warner, E. W. et al. Multiregion sampling of de novo metastatic prostate cancer reveals complex polyclonality and augments clinical genotyping. *Nat. Cancer* 5, 114–130 (2024).
- McGranahan, N. et al. Clonal status of actionable driver events and the timing of mutational processes in cancer evolution. *Sci. Transl. Med.* 7, 283ra54 (2015).

- Herberts, C. & Wyatt, A. W. Technical and biological constraints on ctDNA-based genotyping. *Trends Cancer Res.* 7, 995–1009 (2021).
- 39. de Wit, R. et al. Cabazitaxel versus abiraterone or enzalutamide in metastatic prostate cancer. *N. Engl. J. Med.* **381**, 2506–2518 (2019).
- 40. Jang, A., Kendi, A. T., Johnson, G. B., Halfdanarson, T. R. & Sartor, O. Targeted alpha-particle therapy: a review of current trials. *Int. J. Mol. Sci.* **24**, 11626 (2023).
- Buteau, J. P. et al. Clinical trial protocol for VIOLET: a single-center, phase I/II trial evaluation of radioligand treatment in patients with metastatic castration-resistant prostate cancer with [<sup>161</sup>Tb]Tb-PSMA-I&T. J. Nucl. Med. 65, 1231–1238 (2024).
- 42. Sumanasuriya, S. et al. Elucidating prostate cancer behaviour during treatment via low-pass whole-genome sequencing of circulating tumour DNA. *Eur. Urol.* **80**, 243–253 (2021).
- Emmett, L. et al. [Lu]Lu-PSMA-617 plus enzalutamide in patients with metastatic castration-resistant prostate cancer (ENZA-p): an open-label, multicentre, randomised, phase 2 trial. *Lancet Oncol.* 25, 563–571 (2024).
- 44. Khalaf, D. J. et al. Optimal sequencing of enzalutamide and abiraterone acetate plus prednisone in metastatic castration-resistant prostate cancer: a multicentre, randomised, open-label, phase 2, crossover trial. *Lancet Oncol.* **20**, 1730–1739 (2019).
- 45. Bakht, M. K. et al. Landscape of prostate-specific membrane antigen heterogeneity and regulation in AR-positive and AR-negative metastatic prostate cancer. *Nat. Cancer* **4**, 699–715 (2023).
- 46. Gafita, A. et al. Validation of prognostic and predictive models for therapeutic response in patients treated with [<sup>177</sup>Lu]Lu-PSMA-617 versus cabazitaxel for metastatic castration-resistant prostate cancer (TheraP): a post hoc analysis from a randomised, open-label, phase 2 trial. *Eur. Urol. Oncol.* **8**, 21–28 (2024).
- 47. Abdel-Wahab, M. et al. Radiotherapy and theranostics: a Lancet Oncology Commission. *Lancet Oncol.* **25**, e545–e580 (2024).
- 48. Tukachinsky, H. et al. Genomic analysis of circulating tumor DNA in 3,334 patients with advanced prostate cancer identifies targetable BRCA alterations and AR resistance mechanisms. *Clin. Cancer Res.* **27**, 3094–3105 (2021).
- Nakamura, Y. et al. Clinical utility of circulating tumor DNA sequencing in advanced gastrointestinal cancer: SCRUM-Japan GI-SCREEN and GOZILA studies. *Nat. Med.* 26, 1859–1864 (2020).
- 50. Kwan, E. M. et al. Prospective ctDNA genotyping for treatment selection in metastatic castration-resistant prostate cancer (mCRPC): The Canadian Cancer Trials Group phase II PC-BETS umbrella study. *J. Clin. Oncol.* **41**, 218 (2023).
- 51. Jee, J. et al. Overall survival with circulating tumor DNA-guided therapy in advanced non-small-cell lung cancer. *Nat. Med.* **28**, 2353–2363 (2022).
- 52. Kaittanis, C. et al. Prostate-specific membrane antigen cleavage of vitamin B9 stimulates oncogenic signaling through metabotropic glutamate receptors. *J. Exp. Med.* **215**, 159–175 (2018).
- 53. Rescigno, P. et al. Docetaxel treatment in PTEN- and ERG-aberrant metastatic prostate cancers. *Eur. Urol. Oncol.* **1**, 71–77 (2018).
- Pitter, K. L. et al. Pathogenic ATM mutations in cancer and a genetic basis for radiotherapeutic efficacy. J. Natl Cancer Inst. 113, 266–273 (2021).
- Fallah, J. et al. Efficacy of poly(ADP-ribose) polymerase inhibitors by individual genes in homologous recombination repair gene-mutated metastatic castration-resistant prostate cancer: a US Food and Drug Administration pooled analysis. J. Clin. Oncol. 42, 1687–1698 (2024).
- Hope, T. A. et al. <sup>68</sup>Ga-PSMA-11 PET imaging of response to androgen receptor inhibition: first human experience. *J. Nucl. Med.* 58, 81–84 (2017).

- Emmett, L. et al. Rapid modulation of PSMA expression by androgen deprivation: serial <sup>68</sup>Ga-PSMA-11 PET in men with hormonesensitive and castrate-resistant prostate cancer commencing androgen blockade. *J. Nucl. Med.* **60**, 950–954 (2018).
- Bakht, M. K. & Beltran, H. Biological determinants of PSMA expression, regulation and heterogeneity in prostate cancer. *Nat. Rev. Urol.* 22, 26–45 (2024).
- 59. Zivanovic, A. et al. Co-evolution of *AR* gene copy number and structural complexity in endocrine therapy resistant prostate cancer. *NAR Cancer* **5**, zcad045 (2023).
- 60. Chi, K. N. et al. Study evaluating metastatic castrate resistant prostate cancer (mCRPC) treatment using <sup>177</sup>Lu-PNT2002 PSMA therapy after second-line hormonal treatment (SPLASH). *J. Clin. Oncol.* **39**, TPS5087 (2021).
- Sweeney, C. et al. Ipatasertib plus abiraterone and prednisolone in metastatic castration-resistant prostate cancer (IPATential150): a multicentre, randomised, double-blind, phase 3 trial. *Lancet* 398, 131–142 (2021).
- Nguyen, B. et al. Pan-cancer analysis of CDK12 alterations identifies a subset of prostate cancers with distinct genomic and clinical characteristics. *Eur. Urol.* 78, 671–679 (2020).
- Carreira, S. et al. Biomarkers associating with PARP inhibitor benefit in prostate cancer in the TOPARP-B trial. *Cancer Discov.* 11, 2812–2827 (2021).
- 64. Coates, J. T. et al. Parallel genomic alterations of antigen and payload targets mediate polyclonal acquired clinical resistance to sacituzumab govitecan in triple-negative breast cancer. *Cancer Discov.* **11**, 2436–2445 (2021).
- 65. Violet, J. et al. Long-term follow-up and outcomes of retreatment in an expanded 50-patient single-center phase II prospective trial of <sup>177</sup>Lu-PSMA-617 theranostics in metastatic castration-resistant prostate cancer. *J. Nucl. Med.* **61**, 857–865 (2020).
- 66. Ku, S. Y. et al. Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance. *Science* **355**, 78–83 (2017).

- 67. Sipola, J. et al. Plasma cell-free DNA chromatin immunoprecipitation profiling depicts phenotypic and clinical heterogeneity in advanced prostate cancer. *Cancer Res.* **85**, 791–807 (2025).
- 68. Iravani, A. et al. Molecular imaging of neuroendocrine differentiation of prostate cancer: a case series. *Clin. Genitourin. Cancer* **19**, e200–e205 (2021).
- 69. Sandhu, S. et al. PRINCE: phase I trial of <sup>177</sup>Lu-PSMA-617 in combination with pembrolizumab in patients with metastatic castration-resistant prostate cancer (mCRPC). *J. Clin. Oncol.* **40**, 5017 (2022).
- 70. Azad, A. A. et al. Sequential [Lu]Lu-PSMA-617 and docetaxel versus docetaxel in patients with metastatic hormone-sensitive prostate cancer (UpFrontPSMA): a multicentre, open-label, randomised, phase 2 study. *Lancet Oncol.* **25**, 1267–1276 (2024).
- Tagawa, S. T. et al. PSMAddition: a phase 3 trial to compare treatment with <sup>177</sup>Lu-PSMA-617 plus standard of care (SoC) and SoC alone in patients with metastatic hormone-sensitive prostate cancer. J. Clin. Oncol. **41**, TPS5116 (2023).
- 72. Sayar, E. et al. Reversible epigenetic alterations mediate PSMA expression heterogeneity in advanced metastatic prostate cancer. *JCI Insight* **8**, e162907 (2023).

**Publisher's note** Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

 $\circledast$  The Author(s), under exclusive licence to Springer Nature America, Inc. 2025

Edmond M. Kwan (12,3,44, Sarah W. S. Ng (1,44, Sofie H. Tolmeijer (1, Louise Emmett (1,45,6, Shahneen Sandhu<sup>7,8</sup>, James P. Buteau<sup>7,8</sup>, Amir Iravani<sup>7,8,9,10</sup>, Anthony M. Joshua (1,5,6,11</sup>, Roslyn J. Francis<sup>12,13</sup>, Vinod Subhash<sup>14</sup>, Sze-Ting Lee<sup>15,16,17,18</sup>, Andrew M. Scott<sup>15,16,17,18</sup>, Andrew J. Martin<sup>19,20</sup>, Martin R. Stockler (1,20,21), Gráinne Donnellan (1, Matti Annala<sup>22</sup>, Cameron Herberts (1, Ian D. Davis (1,22,45), Michael S. Hofman (1,28,45), Arun A. Azad (1,28,45), & Alexander W. Wyatt (1,24,45), on behalf of the TheraP Investigators and the ANZUP Cancer Trials Group<sup>14</sup>\*

<sup>1</sup>Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada.<sup>2</sup>Eastern Health Clinical School, Monash University, Melbourne, Victoria, Australia. <sup>3</sup>Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia. 4Department of Theranostics and Nuclear Medicine, St Vincent's Hospital, Sydney, New South Wales, Australia. 5 School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia. <sup>6</sup>Garvan Institute of Medical Research, Sydney, New South Wales, Australia. <sup>7</sup>Prostate Cancer Theranostics and Imaging Centre of Excellence (ProsTIC), Molecular Imaging and Therapeutic Nuclear Medicine, Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia. 8Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia. <sup>9</sup>Division of Nuclear Medicine, Department of Radiology, University of Washington School of Medicine, Seattle, WA, USA. <sup>10</sup>Fred Hutchinson Cancer Center, Seattle, WA, USA. 11Department of Medical Oncology, Kinghorn Cancer Centre, Sydney, New South Wales, Australia. 12Department of Nuclear Medicine, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia. <sup>13</sup>Medical School, University of Western Australia, Perth, Western Australia, Australia. <sup>14</sup>Australian and New Zealand Urogenital and Prostate Cancer Trials Group (ANZUP), Sydney, New South Wales, Australia. <sup>15</sup>Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia. <sup>16</sup>Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Victoria, Australia.<sup>17</sup>School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia.<sup>18</sup>Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia.<sup>19</sup>NHMRC Clinical Trials Centre, University of Sydney, Sydney, New South Wales, Australia.<sup>20</sup>Centre for Clinical Research, University of Queensland, Brisbane, Queensland, Australia.<sup>21</sup>Department of Medical Oncology, Chris O'Brien Lifehouse, Sydney, New South Wales, Australia. <sup>22</sup>Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Centre, Tampere, Finland. <sup>23</sup>Cancer Services, Eastern Health, Melbourne, Victoria, Australia.<sup>24</sup>Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada. <sup>44</sup>These authors contributed equally: Edmond M. Kwan, Sarah W. S. Ng. <sup>45</sup>These authors jointly supervised this work: Ian D. Davis, Michael S. Hofman, Arun A. Azad, Alexander W. Wyatt. \*A list of authors and their affiliations appears at the end of the paper. 🖂 e-mail: ian.davis@monash.edu; michael.hofman@petermac.org; arun.azad@petermac.org; alexander.wyatt@ubc.ca

The TheraP Investigators and the ANZUP Cancer Trials Group

Edmond M. Kwan<sup>1,2,3,44</sup>, Louise Emmett<sup>4,5,6</sup>, Shahneen Sandhu<sup>7,8</sup>, James P. Buteau<sup>7,8</sup>, Amir Iravani<sup>7,8,9,10</sup>, Anthony M. Joshua<sup>5,6,11</sup>, Roslyn J. Francis<sup>12,13</sup>, Vinod Subhash<sup>14</sup>, Sze-Ting Lee<sup>15,16,17,18</sup>, Andrew M. Scott<sup>15,16,17,18</sup>, Andrew J. Martin<sup>19,20</sup>, Martin R. Stockler<sup>20,21</sup>, Ian D. Davis<sup>2,23,45</sup>, Michael S. Hofman<sup>7,8,45</sup>, Arun A. Azad<sup>7,8,45</sup>, Alexander W. Wyatt<sup>1,24,45</sup>, Tim Akhurst<sup>7</sup>, Ramin Alipour<sup>7,8</sup>, Dale L. Bailey<sup>25</sup>, Patricia Banks<sup>8</sup>, Alexis Beaulieu<sup>7</sup>, Louise Campbell<sup>26</sup>, Wei Chua<sup>27</sup>, Megan Crumbaker<sup>5,6,11</sup>, Nattakorn Dhiantravan<sup>7</sup>, Kate Ford<sup>19</sup>, Craig Gedye<sup>28</sup>, Jeffrey C. Goh<sup>29</sup>, Alex D. Guminski<sup>30</sup>, Anis Hamid<sup>31</sup>, Mohammad B. Haskali<sup>7,8</sup>, Rodney J. Hicks<sup>8</sup>, Edward Hsiao<sup>25</sup>, Terry Hung<sup>12</sup>, Ian D. Kirkwood<sup>32</sup>, Grace Kong<sup>7,8</sup>, Ailsa Langford<sup>19</sup>, Nicola Lawrence<sup>33</sup>, Jeremy Lewin<sup>8</sup>, Peter Lin<sup>34</sup>, Michael McCarthy<sup>35</sup>, Margaret M. McJannett<sup>14</sup>, William McDonald<sup>35</sup>, Kate Moodie<sup>7</sup>, Declan G. Murphy<sup>7,8</sup>, Siobhan Ng<sup>36</sup>, Andrew Nguyen<sup>4,5</sup>, David A. Pattison<sup>26</sup>, David Pook<sup>37</sup>, Izabella Pokorski<sup>19</sup>, Shakher Ramdave<sup>38</sup>, Nisha Rana<sup>14</sup>, Aravind S. Ravi Kumar<sup>7</sup>, Andrew D. Redfern<sup>13,39</sup>, Paul Roach<sup>25</sup>, Peter Roselt<sup>7</sup>, Natalie K. Rutherford<sup>40</sup>, Javad Saghebi<sup>7,8</sup>, Geoffrey Schembri<sup>25</sup>, Lavinia Spain<sup>8</sup>, Shalini Subramaniam<sup>19</sup>, Thean Hsiang Tan<sup>41</sup>, Sue Ping Thang<sup>7</sup>, Paul Thomas<sup>26</sup>, Ben Tran<sup>8</sup>, John A. Violet<sup>7</sup>, Roslyn Wallace<sup>8</sup>, Andrew Weickhardt<sup>42</sup>, Scott G. Williams<sup>8</sup>, Sonia Yip<sup>19</sup> & Alison Y. Zhang<sup>43</sup>

<sup>25</sup>Department of Nuclear Medicine, Royal North Shore Hospital, Sydney, New South Wales, Australia. <sup>26</sup>Department of Nuclear Medicine and Specialised PET Services, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia. <sup>27</sup>Liverpool Cancer Therapy Centre, Liverpool Hospital, Sydney, New South Wales, Australia. <sup>28</sup>Department of Medical Oncology, Calvary Mater Newcastle, Waratah, New South Wales, Australia. <sup>29</sup>Department of Medical Oncology, Calvary Mater Newcastle, Waratah, New South Wales, Australia. <sup>29</sup>Department of Medical Oncology, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia. <sup>30</sup>Royal North Shore Hospital, Sydney, New South Wales, Australia.
 <sup>31</sup>Genitourinary Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA. <sup>32</sup>Nuclear Medicine, PET and Bone Densitometry, Royal Adelaide Hospital, Adelaide, South Australia, Australia. <sup>33</sup>Auckland Cancer and Blood Service, Te Whatu Ora Te Toka Tumai, Auckland, New Zealand.
 <sup>34</sup>Department of Nuclear Medicine and PET, Liverpool Hospital, Sydney, New South Wales, Australia. <sup>35</sup>Department of Nuclear Medicine, Fiona Stanley Hospital, Perth, Western Australia, Australia. <sup>36</sup>Department of Oncology, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia.
 <sup>37</sup>Department of Medical Oncology, Fiona Stanley Hospital, Perth, Western Australia. <sup>40</sup>Department of Nuclear Medicine, Hunter New England Health, Newcastle, New South Wales, Australia. <sup>41</sup>Department of Medical Oncology, Royal Adelaide Hospital, Adelaide, South Wales, Australia. <sup>41</sup>Department of Medical Oncology, Royal Adelaide Hospital, Adelaide, South Australia, Australia. <sup>42</sup>Olivia Newton-John Cancer and Wellness Centre, Austin Health, Melbourne, Victoria, Australia. <sup>43</sup>Macquarie University Hospital, Sydney, New South Wales, Australia.

#### Methods

#### Study design, participants and ethical oversight

The clinical trial study design and participant eligibility criteria have been described in detail previously<sup>1,2,5,46</sup>. TheraP (NCT03042312, ACTRN12615000912583) was an open-label, randomized (1:1). phase 2 trial comparing intravenous LuPSMA (every 6 weeks for a maximum of six cycles; starting at 8.5 GBq, decreasing by 0.5 GBq to 6.0 GBq for the sixth cycle) with intravenous cabazitaxel (20 mg  $m^{-2}$ every 3 weeks for a maximum of ten cycles). Eligible participants had progressive mCRPC previously treated with docetaxel and in whom cabazitaxel was considered the next appropriate standard treatment; Eastern Cooperative Oncology Group (ECOG) performance status 0 to 2; and with adequate renal, hematological and liver function. Patients were additionally selected based on the presence of PSMA-positive disease utilizing both [68Ga]Ga-PSMA-11 and 2-[18F] FDG-PET. Patients were required to have at least one lesion with an SUVmax  $\geq$  20, and all other measurable lesions to have an SUVmax >10. Furthermore, patients were excluded if any lesions demonstrated uptake of 2-[18F]FDG without corresponding PSMA expression. Randomization was stratified for disease burden (>20 disease sites versus <20 disease sites as assessed by [<sup>68</sup>Ga]Ga-PSMA-11), previous treatment with either enzalutamide or abiraterone and study site. The primary endpoint was PSA response (PSA50), with key secondary endpoints of PFS and OS. All participants provided signed, written, informed consent. The protocol was approved at each participating institution, and the trial was done in accordance with the principles of the Good Clinical Practice guidelines and the Declaration of Helsinki. Sex and/or gender are not relevant for any findings in this study and were therefore not incorporated into study design, clinical data collection or execution of any analyses. Prostate cancer only affects individuals born as biological males, and our cohort includes participants with aggressive prostate cancer irrespective of gender identity. All samples are deidentified at time of collection, and all researchers are blind to gender identity and gender presentation. Patients were not compensated for their participation in the TheraP trial or secondary correlative biomarker studies.

#### Clinical endpoints, statistical analyses and reproducibility

Given the paucity of validated predictive genomic biomarkers for either LuPSMA or cabazitaxel, the analyses herein are predominantly exploratory and hypothesis-generating. Exact sample sizes and power calculations were not formally prespecified. A core consideration informing our analysis strategy is recognition that the phase 2 TheraP trial was not formally designed to detect cross-arm differences in PFS or OS (both secondary endpoints)<sup>1,73</sup>. We therefore adopted a highly conservative and selective approach to our exploratory post-hoc biomarker analyses, minimizing risks associated with excessive hypothesis testing of small groups in this underpowered trial context. This includes: (1) only evaluating candidate genomic biomarkers present in  $\geq 10\%$  of the TheraP baseline population; (2) selective evaluation of specific alteration classes with established clinical or biological significance in mCRPC; and (3) utilizing a gated two-tiered hypothesis testing strategy that first evaluated binary alteration presence or absence in specific genes, and only stratifying by smaller biologically informed subcategories if the overall binary dichotomization was statistically significant. Statistical analyses are reported without correction for multiple testing unless otherwise stated. The rationale for patient or sample exclusion from specific sub-analyses is clearly indicated in the text and/or figure caption. We did not perform any analyses requiring randomization (beyond that originally implemented in the underlying trial).

Clinical endpoints evaluated in this study included PSA response rate, PFS and OS; extended definitions for these endpoints have been described previously<sup>73</sup>. PSA response rate was defined as the proportion of participants with a PSA reduction of  $\geq$ 50% from baseline. PFS is defined as the interval from the date of randomization to the date of first evidence of PSA progression (as per Prostate Cancer Working Group 3 criteria), pain progression, radiographic progression, death from any cause, whichever occurs first, or the date of last known follow-up without progression. OS is defined as the interval from the date of registration to date of death from any cause or date of last known follow-up alive.

Statistical tests and data analysis were performed in R v.4.4.0 (using dplyr v.1.1.4, forcats v.1.0.0, janitor 2.2.0, lubridate v.1.9.3, purr v.1.0.2, psych v.2.4.3, stringr v.1.5.1, stats v.4.4.0, gtsummary v.1.7.2, survival v.3.5-8) and in Python 3.9.12 (using pandas v.1.4.2, numpy v.1.23.5, scipy v.1.10.1, statsmodels v.0.13.5) and Julia v.1.8.5. Visualizations were generated using the R packages ggplot2 v.3.4.3, forestplot v.3.1.3, survminer v.0.4.9, cowplot v.1.1.3 and patchwork v.1.2.0, and the Python packages matplotlib v.3.7.1 and seaborn v.0.13.0. The following bioinformatics or genomic analysis software was used: cutadapt v.4.9, seqkit v.0.8.1, Bowtie2 v.2.3.4.3, samblaster v.0.1.24, bedtools v.2.26, samtools v.1.8 (htslib v.1.8), Mutato v.0.8 and ANNO-VAR (v.20191024), as well as custom in-house software. Data were presented descriptively as proportions, medians and their respective ranges. All boxplots are centered at the median unless otherwise specified and display the IQR. Whiskers extend 1.5× IQR past the quartiles; all raw data are shown where possible. Categorical variables between genomic and clinical subgroups were compared using Fisher's exact test, whereas continuous variables were compared using the Mann-Whitney U-test. Survival fractions for time-to-event outcomes (PFS and OS) were estimated using the Kaplan-Meier method and differences between groups were evaluated using the log rank test. Cox proportional hazards models were used to calculate hazard ratios (HR) and 95% confidence intervals (CI). All hypothesis tests were two-tailed and used a 5% significance threshold. P values are reported to two significant figures.

The silhouette, test tube and torso skeleton (Fig. 1a) were manipulated from the linked source and are available under a Creative Commons Attribution 2.5 Generic (https://creativecommons.org/licenses/ by/2.5/) licence. We thank all the original authors for making their work available.

#### Blood processing and cfDNA extraction

Full details relating to sample collection and initial processing can be found in the TheraP biospecimen sampling manual (Supplementary Information). Briefly, up to 25 ml of peripheral blood was collected in EDTA collection tubes. Whole blood (up to 5 ml) was separately aliquoted, while the remaining blood (up to 20 ml) underwent two-step centrifugation (1,600g for 10–15 min followed by 3,000g for 10–15 min) to separate and clarify plasma. Plasma and whole blood were stored at -70 °C until batch sample processing.

From the whole blood sample, WBC DNA (serving as germline DNA and clonal hematopoiesis control) was isolated using the Promega Maxwell RSC Blood DNA kit (Promega; cat. no. 55114) as per the instructions outlined in the technical manual (version TM419), resulting in a final elution volume of 50 µl. Conversely, cfDNA was extracted from plasma using the QIAGEN QIAamp Circulating Nucleic Acid Kit (Qiagen) according to the manufacturer's instructions. Following extractions, WBC DNA and cfDNA were quantified using the QuantiFluor ONE dsDNA kit and Quantus Fluorometer (Promega). cfDNA samples with total cfDNA yield exceeding 50 ng ml<sup>-1</sup> of plasma underwent gel electrophoresis (using 1.3% SYBR-Safe agarose gel) to rule out the presence of high molecular weight DNA resulting from probable WBC contamination. In rare instances in which high molecular weight DNA is detected (suggesting substantial admixture of WBC DNA with cfDNA), AMPure XP bead (Beckman Coulter; cat. no. A63880) clean-up was performed as per manufacturer's instructions.

Targeted capture, sequencing and bioinformatic analysis Library preparation, targeted capture and sequencing. Sequencing libraries for WBC DNA samples were prepared with the KAPA Hyper-Plus Kit (Roche; cat. no. KK8512-07962401001) following instructions outlined in the technical manual (version KR1145, v.9.23): 50 ng of input DNA was used for each library. Enzymatic fragmentation of WBC DNA was performed for 15 min at 37 °C using a diluted conditioning solution resulting in a final concentration of 0.06 mM EDTA in the fragmentation reaction. Sequencing libraries for cfDNA samples were prepared with the KAPA HyperPrep Kit (Roche) as per the manufacturer's instructions: 10-50 ng input cfDNA was used for each library, depending on cfDNA extraction yield (Supplementary Table 2). After end-repair and A-tailing, both WBC DNA and cfDNA libraries underwent overnight adapter ligation at 4 °C using IDT xGen CS UMI Adapters (IDT: cat. no. 1080799), followed by polymerase chain reaction amplification with custom unique dual index primer pairs. Library quantification was performed via NanoDrop, and each library was run on a 1.3% SYBR-Safe agarose gel to confirm success.

Purified sample libraries were multiplexed to obtain single pools with a combined mass of 2.5 µg. Library pools were then hybridized to a KAPA HyperChoice probe set for a minimum of 16 h at 55 °C. This probe set has previously been described<sup>21</sup>. In brief, it captures exons from 76 predominantly prostate cancer-relevant genes (including FOLH1, which encodes PSMA), but also introns and flanking regions of selected genes, including TP53, PTEN, RB1, FOXA1, CHD1, MYC, AR, BRCA2, MSH2, MSH6 and others. The KAPA HyperChoice MAX 3 Mb T3 panel (Kapa; cat. no. 09052917001) was added at one-third the concentration of the targeted probe set, providing a genome-wide backbone of ~9,000 additional probes (spaced ~350 Kb apart) capturing heterozygous germline single nucleotide polymorphisms (SNPs) at common frequencies across various ancestral backgrounds. This whole-genome backbone approach (median 603× coverage for the cfDNA samples) provides greater resolution to inform on overall genomic instability, assists in differentiating between focal and broad chromosome arm copy number calls, and aids in ctDNA% estimation (see 'Estimation of circulating tumor DNA fraction'). Final libraries were purified with KAPA HyperPure Beads (Kapa; cat. no. 08963843001) before quantification with the Quantus Fluorometer. Library pools were then sequenced on a NovaSeq 6000 S4.

Sequencing alignment and quality control. Following sequencing on Illumina machines, adapters from the 3'-end were trimmed using cutadapt v.4.9 (ref. 74) in paired mode. Low-quality read tails (smoothed base quality <30) were trimmed using an in-house algorithm. Per-base read coverages in target regions were quantified using seqkit v.0.8.1 (https://github.com/annalam/seqkit), after duplicate removal. Paired-end reads were aligned to the hg38 reference genome using Bowtie-2.3.0 (ref. 75). An additional local realignment step was performed using ABRA2 v.2.24 with default parameters, but allowing low mapping quality reads (mapq  $\geq$ 2) to be included in the realignment to boost insertion and deletion (indel) detection<sup>76</sup>. Duplicate reads were marked using samblaster v.0.1.24 (ref. 77). Germline SNPs were used to verify the patient identity of baseline and progression cfDNA samples and matched WBC.

**Somatic mutation identification.** Somatic mutations (single nucleotide variants (SNVs) and small indels) were identified from cfDNA as previously described<sup>23-25</sup>. Briefly, independently identified mutations required a minimum supporting mutant read count of  $\geq$ 8 for coding and  $\geq$ 20 for noncoding mutations, plus a VAF of  $\geq$ 1% (reduced to 0.5% for established hotspot mutations). Our minimum required mutant read support equates to an approximate minimum VAF of -0.5–1% (given our target per-sample depth of 1,500× and expectation of spatial read-coverage stochasticity) aligning with the limits of detection of contemporary commercial pan-cancer ctDNA genotyping companion

diagnostics<sup>48</sup>. Note that a minimum VAF of ~0.5–1% mathematically equates to a ctDNA fraction of approximately 2%, below which somatic SNVs or indels are generally not reliably detectable (high false-negative rate) because of the likelihood of insufficient mutant read-support. In addition, we required: (1)  $\geq$  20 position-matched read depth in the patient-matched WBC DNA, (2) cfDNA VAF  $\ge$  3× and  $\ge$ 5× higher than the position-matched VAF in the paired WBC DNA for coding and noncoding mutations respectively, and (3) cfDNA VAF to be  $\ge 20 \times$  and  $\ge 50 \times$ higher than the average position-matched VAF across all WBC DNA samples for coding and noncoding mutations respectively. Per-patient comparison with matched WBC enabled removal of clonal hematopoiesis variants and germline polymorphisms that may masquerade as tumor-derived cfDNA variants in assays that do not perform synchronous WBC sequencing. For base substitutions, the average mapping quality of mutation-supporting reads was required to be  $\geq 10$ or  $\geq$  30, and the average distance of the mutant allele from the nearest read end must have been ≥15 or ≥25 bases for coding and noncoding mutations, respectively. Protein-level consequences of variants were predicted using ANNOVAR<sup>78</sup>. Additional dependent mutation calling (enabling more sensitive variant detection using a priori information across same-patient serial cfDNA) was adopted to assist with estimating ctDNA% and characterizing treatment-emergent resistance mutations. To call a mutation that had already been independently identified in another same-patient sample, the aforementioned independent mutation calling thresholds were relaxed to  $\geq$ 3 supporting reads and a VAF of  $\geq 1\%$ . All somatic mutations were manually inspected using Integrated Genomics Viewer.

**Germline mutation identification.** Germline variants were identified by searching WBC samples for variants with an alternative allele frequency of  $\geq 15\%$  with  $\geq 5$  supporting reads. Common germline variants with a population allele frequency of  $\geq 0.5\%$  in GNOMAD were deemed unlikely to be pathogenic or clinically relevant and were discarded. Protein-level consequences of variants were predicted based on ANNOVAR<sup>78</sup>. Variants were considered pathogenic if they resulted in a truncated protein (for example, stopgains, frameshifts) or were missense mutations classified as 'pathogenic' or 'likely pathogenic' based on ClinVar annotation<sup>79</sup>.

Copy number alteration analysis. Copy number analysis was performed using previously described custom methodology<sup>12,21</sup>. We leveraged our targeted panel's genome-wide backbone of heterozygous germline SNPs (offering both positional coverage log ratio (LR) information and heterozygous SNP allele frequency (HSAF) data) to fit individual ploidy models to each cfDNA sample, thereby ascertaining chromosomal arm-level copy number alterations, WGD status and ctDNA%. Low ctDNA% fraction (<20%) precludes accurate model fitting and therefore WGD status was considered unevaluable for these cases ('Estimation of circulating tumor DNA fraction' below). All models were manually reviewed. For focal (gene-level) copy number alterations, dense probe coverage in exons and select introns of targeted panel genes facilitated calculation of intragenic median coverage LR and HSAF. Coverage LR is calculated across tumor-normal pairs at base pair resolution, and normalized by median sequencing depth and guanine-cytosine (GC) content. A pool of control cfDNA samples from prostate cancer patients (n = 31) with no detectable somatic mutations or copy number alterations (putatively ctDNA-negative) served as a reference for GC correction. For targeted panel genes, LR and HSAF thresholds were used to assign categorical copy number status: (1) deep deletion, LR [-inf, -1]; (2) shallow deletion, LR [-1, -0.3] OR LR [-0.3, -0.15] plus HSAF  $\geq 0.6$ ; (3) copy gain, LR [0.3, 0.7] OR LR [0.15, 0.3] plus HSAF  $\geq 0.6$ ; (4) amplification, LR [0.7, inf]; and (5) no evidence of copy number alteration. These thresholds were empirically determined by examining the distribution of LR and HSAF in negative control cfDNA samples from healthy volunteers and prostate cancer

patients without detected ctDNA, as previously described<sup>24</sup>. For key clinically relevant genes, absolute copy number calls were manually assessed by comparing gene-level traces of LR and HSAF against each sample's fitted whole-genome ploidy models, allowing a more precise and accurate assessment of allelic configuration and null status ('Biomarker assignment' below).

Identification of structural variants. Structural variants in cfDNA were identified using split-read methodology implemented in the previously validated Breakfast software v.0.6 (github.com/annalam/breakfast) with the--max-frag-len=1000--anchor-len=30--merge-duplicates options. A detailed description of Breakfast and its validation are given in refs. 12,23. A minimum of four unique junction-spanning reads were required to detect a structural variant. Because breakpoint positions of genuine somatic structural variants are almost always unique per-patient tumor, we removed structural variants with identical breakpoints in either the patient's matched WBC or cfDNA samples from any other patient reasoning that these are likely false positives. Structural variants in key prostate cancer driver genes (including PTEN, TP53, RB1, BRCA1/2, ATM and select DDR-related genes) were manually reviewed for predicted protein impact using UCSC BLAT (https://genome.ucsc. edu/cgi-bin/hgBlat). Any candidate structural rearrangements with supporting split-reads that mapped ambiguously to multiple highly homologous regions were discarded. Only structural variants predicted were considered pathogenic and were included in correlative analyses.

**Estimation of ctDNA fraction.** The ctDNA% for each plasma cfDNA sample was determined using one of two orthogonal approaches: (1) a mutation-based method using the maximal allele frequency of eligible autosomal somatic mutations, or (2) a copy number-based method using genome-wide coverage data and germline heterozygous SNP allele frequencies to fit per-sample ploidy models. Both approaches follow published methodology<sup>12,21,23</sup>, and are described below. Note that our two-pronged approach for measuring ctDNA fraction mirrors the contemporary industry-standard methodology utilized by several widely available commercial companion diagnostics. These commercial assays harbor a similar ctDNA fraction limit of detection of -1-2% (ref. 48), but may be slightly more prone to false-positive ctDNA estimates because of inadequate removal of clonal hematopoiesis through not incorporating synchronous WBC profiling (in contrast to our research assay).

For the mutation-based method, ctDNA% was estimated using the VAF of autosomal somatic mutations in nonamplified genes (coverage LR <0.3) targeted by our sequencing panel and with  $\geq$ 30 read depth. Somatic mutation VAFs can be elevated in circumstances of concurrent deletion of the wild-type allele (that is, loss of heterozygosity (LOH)). Given difficulties with reliably detecting LOH at low ctDNA fraction, we conservatively assumed that all somatic mutations may be associated with concomitant LOH. Under this assumption, ctDNA

fraction and VAF are related because ctDNA ~ fraction =  $\frac{2}{(\frac{1}{\log t}+1)}$ .

The mutation-based ctDNA% estimate was calculated using the somatic mutation with the highest VAF, based on the assumption that this mutation was most likely to represent a truncal alteration present in a majority of ctDNA-contributing cancer cells. In the few cases in which the only mutation identified in the sample was allosomal, the mutation-based ctDNA% was estimated to be equivalent to the VAF. Germline variants, sequencing and alignment artifacts, and clonal hematopoiesis of indeterminate potential can confound somatic mutation-based estimation of the ctDNA fraction, but are largely eliminated through our parallel deep sequencing of patient-matched WBC DNA and manual curation strategy, we fit ploidy models to each cfDNA sample's genome-wide coverage LR and HSAF data enabled

by the genome-wide SNP grid embedded in our panel. Automated maximum-likelihood solutions were manually vetted and adjusted as necessary to arrive at a final ploidy model for subsequent derivation of segmental copy number status and sample ctDNA%. Acknowledging that copy number-based model fitting accuracy decreases in samples with legitimately low ctDNA%, we used copy number-based ctDNA% estimates for samples with ctDNA ≥20%, and instead leveraged our mutation-based ctDNA% estimates for samples with ctDNA <20% (as assessed via the copy number method). In the event that only an AR amplification, structural variant or isolated somatic chromosomal arm aneuploidy was detected in cfDNA without any additional somatic mutations, ctDNA% was conservatively heuristically estimated to be 5%. Samples without detected mutations or focal or large-scale copy number events were categorized as ctDNA-negative. ctDNA% prognostic risk categories of high (30-100%), low (2-30%) and undetectable (<2%) were predefined<sup>20</sup>. Category thresholds were originally heuristically defined to achieve an approximately balanced dichotomization of patients commencing first-line mCRPC therapy in an earlier clinical trial cohort<sup>24</sup>. The lower ctDNA% boundary of 2% corresponds to our targeted assay's approximate lower VAF limit of detection of ~0.5% for somatic SNVs and/or indels.

**Biomarker assignment.** We used a two-tiered hypothesis testing strategy for all genomic correlative outcomes assessments: first testing binary alteration presence or absence (of any pathogenic defect, excluding monoallelic deletions), then stratifying by compound alteration status, recognizing that (1) distinct classes of genomic alteration may differentially impact protein function and (2) in the context of gene dosage and haploinsufficiency, a significant reduction (beyond that of one-allele loss) or complete loss of functional gene copies may be required to effect a biological or clinical phenotype.

For all clinical correlative analyses, we utilized a set of gene-specific criteria for binarizing patients by presumed pathogenic alteration status (summarized in Supplementary Table 5). This incorporated homozygous deletions of the entire gene body, AR genomic structural rearrangements, and SNVs and indels with ≥1% VAF aligning with our previous clinical correlative work<sup>21,24,36</sup>, while additionally including non-AR structural variants and focal intragenic deletions predicted to disrupt  $\geq$ 1 exon. Focal intragenic deletions were evaluated by plotting each per-gene LR and HSAF spatial profile with overlaid global ploidy states inferred from genome-wide copy number model fitting, thereby enabling manual validation of our automated per-gene copy number calls, while also identifying focal intragenic events that would be obfuscated by gene-level summary metrics of coverage LR and HSAF (that is, analyzing the gene body as a single unit). Using this information, we enumerated the number of remaining copy-unaltered alleles. Copy status was assumed to be neutral in cases with low ctDNA%, ambiguous or undeterminable ploidy model fitting, or excessive sample sequencing noise and coverage stochasticity (for example, because of GC bias). Monoallelic deletions (either whole-gene or intragenic focal deletions) without any concomitant mutations or structural variants in the same gene were not considered pathogenic-only homozygous deletions of  $\geq$ 1 exon supported by heterozygous SNP evidence where available were considered as 'alteration present'.

The granular copy number analysis above was synthesized with mutation (both somatic and germline) and structural variant calls to assess the compound alteration status of key genes. We define 'null status' in which all copies of the gene were disrupted and no wild-type copies remain. A gene was considered null if any of the following were true: (1) any coding region of the gene had an absolute copy number of zero (all alleles spanning an exon were deleted); (2) presence of a pathogenic mutation with  $\geq 1\%$  VAF plus LOH, such that all remaining alleles (1 for diploid or 2 for WGD) are mutated and from the same parental origin; (3) presence of a pathogenic mutation with  $\geq 1\%$  VAF plus copy-neutral LOH, such that the wild-type allele was deleted and the

mutated allele was gained and all remaining alleles are mutated (2 for diploid and 4 for WGD); (4) presence of a pathogenic structural variant plus deletion of the wild-type allele; and (5) a combination of multiple structural variants and mutations with  $\geq 1\%$  VAF, which were assumed to affect different alleles unless the alterations were in close enough proximity to be phased. The compound gene status for key genes was critically reviewed by three genomic scientists to reach consensus.

AR gene dosage may differentially influence mCRPC biology and clinical outcomes. Therefore, we focused on two distinct biological categorizations of absolute  $AR \operatorname{copy} \operatorname{number} (\operatorname{gain} \operatorname{versus} \operatorname{amplification})$ for baseline correlative biomarker assessment: (1) AR gain, absolute ctDNA fraction adjusted copy number  $\geq$ 4; and (2) AR amplification, absolute ctDNA fraction adjusted copy number  $\geq 8$ . These definitional thresholds of 4 and 8 correspond roughly to the first and third quartile of absolute AR copy number as evaluated in all TheraP baseline ctDNA samples with ctDNA  $\geq$ 5%. Note that in contrast to SNVs or indels, we only evaluated absolute AR copy number in samples with ctDNA  $\geq$ 5%. The asymptotic nature of the formula for deriving absolute AR copy number  $(1 + \frac{2^{(L-d)}-1}{ctDNA\%})$ , where *L* is the gene LR and *d* is the diploid level (parameterization of global ploidy fit)) means that the output is highly sensitive to small perturbations or uncertainty in ctDNA fraction, especially in the limit of lower ctDNA%. Therefore, we conservatively heuristically raised the minimum ctDNA fraction to 5% to mitigate inflated error in inferred absolute AR copy number. Across the entire TheraP baseline population, 32 samples had ctDNA  $\geq$ 2% versus 43 harboring ctDNA  $\geq$ 5%, and we rationalized that the significant increase in analytical and/or technical stringency outweighed the slight reduction in sample size and statistical power, in electing to use a minimum 5% cutoff for absolute AR copy number assessment.

#### Assessment of ctDNA population shift

Mutation analysis. In this analysis, we considered only mutations (SNVs and small indels) that were amenable to detection in both timepoints. This includes mutations either already called in both timepoints, or called in only one timepoint and that had a  $\geq 0.9$  probability of detecting  $\geq 3$  more supporting mutant reads in the other timepoint, assuming that the biological ground-truth VAF did not change across timepoints. This removes mutations that seem to appear or disappear in progression because of variable ctDNA% and/ or sequencing depth across timepoints rather than a true CCF change. For example, for a mutation called at baseline and not at progression, Expected VAF at progression =  $\frac{\text{Baseline VAF} \times \text{Progression ctDNA\%}}{\text{Baseline VAF}}$ . The probability of detecting  $\geq 3$  supporting reads can then be modeled with 1 - F(k, n, p)where F is the cumulative distribution function of a binomial distribution with parameters k = 2, n, which is the mutation location read depth at progression, and p, which is the expected VAF at progression. If the resulting probability is <0.9, then the mutation was excluded from this analysis. The identical (but reciprocal) calculation was performed for mutations called at progression but not at baseline.

To identify likely mutational profile shifts, two lines of evidence were considered: (1) mutations that were called in one timepoint and had zero mutant read support in the other timepoint (that is, newly appeared or disappeared in progression); and (2) mutations that were detected in both timepoints but underwent a significant CCF change. We classified a patient as having a mutational profile shift if they had any of: (1)  $\geq$ 4 mutations with significant CCF change; (2)  $\geq$ 1 mutation with CCF change and  $\geq$ 1 newly appeared or disappeared mutation; or (3)  $\geq$ 2 newly appeared or disappeared mutations.

Significant CCF change was determined per mutation by first calculating the CCF of the mutation at both timepoints: we calculated the range of VAFs that correspond to CCFs from 0 to 1 at intervals of 0.01, using the sample's ctDNA% and absolute copy number of the mutated gene. For each possible VAF, we then calculated the probability of obtaining the observed number of supporting mutant reads given the read depth at the position, modeled on a binomial distribution. If a

mutation had no supporting reads (was undetected in the timepoint), the number of supporting reads was artificially conservatively set to 1 to satisfy Cromwell's rule. In subsequent analyses, the CCF of mutations with no supporting reads were reset to 0. The list of probabilities was normalized against the total cumulative distribution function probability over the range, and the CCF corresponding to the VAF with the maximum posterior probability was taken as the CCF for the mutation. CCFs corresponding to a cumulative probability of 0.025 and 0.975 were taken as the 95% CI. In cases in which the observed VAF implied a CCF beyond the [0, 1] range–common in cases of (copy-neutral) LOH in which only the mutant allele remains–and the list of probabilities in  $CCF \in [0,1]$  was 0, the CCF was set to 1. Conservatively, a significant CCF change was called only if the confidence intervals of the mutation CCFs in the two timepoints were separated by  $\geq 0.05$ .

AR copy number analysis. To evaluate whether serial same-patient differences in absolute AR copy number were consistent with a genuine biological shift (versus originating predominately from stochastic technical factors), we performed 10,000 rounds of simulation per sample. Each simulation perturbed the measured intragenic AR log ratio and sample ctDNA% with random noise to account for experimental uncertainty. Specifically, ctDNA% (denoted F) was perturbed using both multiplicative and additive Gaussian noise:  $F_{sim} = F_{measured} \times$  $2^{N(0,\sigma_1)} + N(0,\sigma_2)$ . Standard deviations  $\sigma_1 = 0.12$  and  $\sigma_2 = 0.06$  were empirically derived from earlier error modeling of our mutationbased ctDNA% estimation methodology, using matched wholeexome sequencing as the ground truth (as previously described)<sup>23</sup>. To accommodate the orthogonal approaches to measuring ctDNA% used in TheraP ('Estimation of circulating tumor DNA fraction'), we heuristically divided these dispersion parameters  $\sigma$ 1 and  $\sigma$ 2 by three for samples in which ctDNA% was inferred from the more accurate ploidy-based approach (that is, in samples with true ctDNA% above 20%). Similarly, the measured AR log ratio was perturbed by Gaussian noise with a standard deviation of 0.137 (denoted as  $LR_{sim}$ ). The simulated absolute AR copy number for each sample was then computed using  $AR_{sim} = 1 + (\frac{2^{(R_{sim}-d)-1}}{(F_{sim})})$  and stored as a vector up to 10,000 values

(simulation rounds where  $F_{sim}$  was <2% were discarded to align with our approximate ctDNA% limit of detection and avoid asymptotic behavior in the resultant simulated *AR* copy number distribution). *d* represents a parameterization of our ploidy model fitting signifying the log ratio representing a diploid state. These *AR*<sub>sim</sub> values were sorted, and an 85% Cl was empirically calculated and recentered on the sample's true measured absolute *AR* copy number. We considered any pair of matched baseline-progression cfDNA samples to harbor a statistically significant difference in absolute *AR* copy number if their respective 85% Cls did not overlap.

Genome-wide copy number analysis. To robustly detect absolute changes from baseline to progression in copy number status and HSAF detected by whole-genome SNP sequencing, we only leveraged patients with  $\geq$  20% ctDNA at both timepoints. Two patients with  $\geq$  20% ctDNA were excluded from this analysis because of high sequencing noise in one or both samples from the patient. Using an inhouse segmentation algorithm, we aligned segmentation of the whole-genome data of all cfDNA samples (the whole genome was divided in the same bins for every sample). This enabled comparison of copy number status and HSAF across patients and timepoints. Absolute copy number per segment was calculated as Absolute copy number of the segment  $= \frac{(2^{(lr+1-dl)}-2)}{\operatorname{ctDNAfraction+2}}$ . In this formula, Ir is the log ratio of the segment from targeted copy number data and dl is the diploid line of the ploidy model of the sample. For the tumor-specific HSAF the following formula was used: Tumor ~ HSAF =  $\frac{(HSAF-0.5 \times normal \sim cell \sim fraction)}{2}$ . To stringently detect changes ctDNAfraction

in copy number status and HSAF status, confidence intervals were calculated for every segment using the per segment standard deviation of the log ratio and HSAF. Changes were considered significant if the confidence intervals at baseline and progression did not overlap. Only segments composed of three or more target probes, or three or more heterozygous SNPs were included to evaluate genomic changes in copy number status and HSAF status, respectively. Participants with five or more segments showing either a significant change in copy number status or HSAF status were considered to be patients with whole-genome evidence of a population shift.

#### **Reporting summary**

Further information on research design is available in the Nature Portfolio Reporting Summary linked to this article.

## Data availability

The hg38 human reference genome was downloaded from UCSC. Germline variant population frequency is available at gnomAD v.3.0 (https://gnomad.broadinstitute.org/). ANZUP is obligated to protect the rights and privacy of trial participants, thereby necessitating restricted access to patient-level clinical and genomic sequencing data. Deidentified participant sequencing and select clinical data will be made available to researchers who are registered with an appropriate institution following publication. Methodologically sound proposals for any purpose will be considered by the trial executive committee who will have the right to review and comment on any draft manuscripts before publication. Proposals should be directed to michael.hofman@ petermac.org. To gain access, data requesters will be required to sign a data access agreement. Timeframe for data access will be subject to ANZUP policy and process. Data supporting the findings of this study are available in the article in Supplementary Tables 1-11. Source data are provided with this paper.

# **Code availability**

Our complete ctDNA somatic variant calling pipeline is available on GitHub (https://github.com/annalam/cfdna-wgs-manuscript-code) and is described in detail in a previous publication<sup>12</sup>. No additional custom software was utilized for any analysis performed herein.

# References

- Hofman, M. S. et al. TheraP: a randomized phase 2 trial of <sup>177</sup>Lu-PSMA-617 theranostic treatment vs cabazitaxel in progressive metastatic castration-resistant prostate cancer (Clinical Trial Protocol ANZUP 1603). *BJU Int.* **124**, 5–13 (2019).
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).
- 75. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. *Nat. Methods* **9**, 357–359 (2012).
- Mose, L. E., Perou, C. M. & Parker, J. S. Improved indel detection in DNA and RNA via realignment with ABRA2. *Bioinformatics* 35, 2966–2973 (2019).
- Faust, G. G. & Hall, I. M. SAMBLASTER: fast duplicate marking and structural variant read extraction. *Bioinformatics* **30**, 2503–2505 (2014).
- Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. *Nucleic Acids Res.* 38, e164 (2010).
- Landrum, M. J. et al. ClinVar: improving access to variant interpretations and supporting evidence. *Nucleic Acids Res.* 46, D1062–D1067 (2018).

## Acknowledgements

The TheraP trial (ANZUP 1603) is a collaboration between the ANZUP Trials Group, the NHMRC Clinical Trials Centre, University of Sydney and the Australasian Radiopharmaceutical Trials Network (ARTnet) in partnership with the Prostate Cancer Foundation of Australia with support from ANSTO. Endocyte (a Novartis company). Movember, The Distinguished Gentleman's Ride, It's a Bloke Thing and CAN4CANCER. ANZUP receives infrastructure support from the Australian government through Cancer Australia (Support for Cancer Clinical Trials Program). This correlative research study was primarily supported by the Prostate Cancer Foundation via a 2023 PCF Challenge Award to A.W.W. Additional funding support was also received from a Terry Fox New Frontiers Program Project Grant and a Canadian Cancer Society Challenge Grant (grant no. 707339). E.M.K. is supported by a Prostate Cancer Foundation Young Investigator Award and an ANZUP Synchrony Fellowship. S.H.T. is supported by a Prostate Cancer Foundation Young Investigator Award and Michael Smith Health Research BC Trainee Award, J.P.B. is supported by a Prostate Cancer Foundation Young Investigator Award and PhD support through an Australian Government Research Training Program Scholarship. A.M.S. was supported by an NHMRC Investigator Fellowship (APP1177837). I.D.D. is supported by an NHMRC Practitioner Fellowship (APP1102604). M.S.H. acknowledges philanthropic and government grant support from the Prostate Cancer Foundation, the Peter MacCallum Foundation and a NHMRC Investigator Grant and Movember. S.S. is supported by the NHMRC and additionally acknowledges grant support from the Prostate Cancer Foundation and the Peter MacCallum Foundation. The NHMRC Clinical Trials Centre was supported by NHMRC Program Grants 1037786 and 1150467. <sup>177</sup>Lu was supplied by ANSTO. Endocyte provided PSMA-11 and PSMA-617, and additional funding support. We acknowledge and thank the 200 patients for their participation in the TheraP study; and the principal investigators, coinvestigators, study coordinators, nurses, radiopharmacists and chemists and nuclear medicine technologists at the 11 centers across Australia for their dedication and enthusiasm. We also thank members and staff of the ANZUP Board, Scientific Advisory Committee, Prostate Cancer Subcommittee, Consumer Advisory Panel and Independent Data Safety and Monitoring Committee; NHMRC Clinical Trials Centre; and ARTnet.

# **Author contributions**

Conceptualization: E.M.K., L.E., A.J.M., I.D.D., M.S.H., A.A.A. and A.W.W. Methodology: E.M.K., S.W.S.N., S.H.T., M.A., C.H. and A.W.W. Software: E.M.K., S.W.S.N., S.H.T., M.A., C.H. and A.W.W. Validation: E.M.K., S.W.S.N., S.H.T., C.H. and A.W.W. Formal analysis: E.M.K., S.W.S.N., S.H.T., M.A., C.H. and A.W.W. Formal analysis: E.M.K., S.W.S.N., S.H.T., M.A., C.H. and A.W.W. Investigation: E.M.K., S.W.S.N., S.H.T., G.D., C.H. and A.W.W. Resources: M.A., I.D.D., M.S.H., A.A.A. and A.W.W. Data curation: E.M.K., S.W.S.N., S.H.T., S.S., G.D., C.H. and A.W.W. Writing original draft: E.M.K., S.W.S.N., S.H.T., C.H. and A.W.W. Writing—review and editing: E.M.K., S.W.S.N., S.H.T., L.E., S.S., J.P.B., A.I., A.M.J., R.J.F., V.S., S.-T.L., A.M.S., A.J.M., M.R.S., M.A., C.H., I.D.D., M.S.H., A.A.A. and A.W.W. Visualization: E.M.K., S.W.S.N., S.H.T., C.H. and A.W.W. Supervision: I.D.D., M.S.H., A.A.A. and A.W.W. Project administration: E.M.K. V.S., I.D.D., M.S.H., A.A.A. and A.W.W. Funding acquisition: I.D.D., M.S.H., A.A.A. and A.W.W.

# **Competing interests**

E.M.K. has consulted or served in an advisory role for Astellas Pharma, Janssen and Ipsen, received travel funding from Astellas Pharma, Pfizer, Ipsen and Roche, received honoraria from Janssen, Ipsen, Astellas Pharma and Research Review, and received research funding from Astellas Pharma (institutional) and AstraZeneca (institutional). L.E. has consulted or served in an advisory role for Noxopharm and Clarity Pharmaceuticals, participated in a speakers' bureau for Janssen Oncology, Mundipharma and Astellas Pharma, and received research funding from Noxopharm (institutional) and Novartis (institutional). S.S. has consulted or served in an advisory role for AstraZeneca, Bristol-Myers Squibb, Merck Sharp & Dohme, Novartis, Skyline Diagnostics and AbbVie, received honoraria from

Bristol-Myers Squibb (institutional), Merck (institutional), AstraZeneca (institutional) and Janssen (institutional), and received research funding from Amgen (institutional), AstraZeneca (institutional), Merck (institutional), Endocyte/Advanced Accelerator Applications (institutional), Roche/Genentech (institutional), Novartis (institutional), Pfizer (institutional) and Senhwa Biosciences (institutional). A.I. has consulted or served in an advisory role for Novartis, Lantheus, Curium, ITM, Bayer, Boston Scientific, Ambrx/J&J (institutional), and received research funding from NIH (institutional), Novartis (institutional), SNMMI (institutional) and ACR (institutional). A.M.J. has consulted or served in an advisory role for Janssen Oncology, Ipsen, AstraZeneca, Sanofi, Pfizer, Novartis, Merck Serono, Eisai, IDEAYA Biosciences, IQvia, Bayer, Astellas Pharma, Grey Wolf Therapeutics, Medison and Starpharma, has a patent or received royalties with Cancer Therapeutic Methods, owns stock or holds ownership interests in Pricilium Therapeutics and Opthea, and receives research funding from Bristol-Myers Squibb (institutional), Janssen Oncology (institutional), Merck Sharpe & Dohme (institutional), Mayna Pharma (institutional), Roche/Genentech (institutional), Bayer (institutional), Lilly (institutional), Pfizer (institutional), AstraZeneca (institutional) and Corvus Pharmaceuticals (institutional). R.J.F. consulted or served in an advisory role for AIQ Solutions, receives research funding from AIQ Solutions, and has an immediate family member employed by and owns stock in AIQ Solutions. A.M.S. has consulted or served in an advisory role for ImmunOs Therapeutics and Imagion Biosystems, has an institutional patent relating to antibodies to EGFR, HER2, PDGF-CC, FN-14, GM-CSF, EphA3, owns stock or holds ownership interests in Paracrine Therapeutics and Certis Therapeutics, and received research funding from Telix Pharmaceuticals (institutional), Curis (institutional), Isotopen Technologien (institutional), Adalta (institutional), Fusion Pharmaceuticals (institutional), AstraZeneca (institutional), EMD Serono (institutional), Cyclotek (institutional), AVID/Lilly (institutional), Merck (institutional), Humanigen (institutional) and Antengene (institutional). M.R.S. has received research funding from Astellas Pharma (institutional), Bayer (institutional), Medivation (institutional), Pfizer (institutional), AstraZeneca (institutional), Bristol-Myers Squibb (institutional), Roche (institutional), Amgen (institutional), Merck Sharpe & Dohme (institutional), Tilray (institutional), BeiGene (institutional) and Novartis (institutional). M.A. is compensated for a leadership role in Fluivia and owns stock in Fluivia. S.H.T. has received honoraria from Bayer. I.D.D. is the unremunerated chair of ANZUP Cancer Trials Group, and has received research funding from Astellas Pharma (institutional), Pfizer (institutional), Roche/Genentech (institutional), MSD Oncology (institutional), AstraZeneca (institutional), Janssen Oncology (institutional), Eisai (institutional), Bayer (institutional), Amgen (institutional), Bristol-Myers Squibb (institutional), Movember Foundation (institutional), Exelixis (institutional), Ipsen (institutional), Seagen (institutional) and ESSA (institutional). M.S.H. has consulted

or served in an advisory role for Janssen, MSD and Novartis, received travel funding from Novartis and Debiopharm Group, and received research funding from Bayer (institutional), Novartis (institutional), Isotopia Molecular Imaging (institutional) and Debiopharm Group (institutional). A.A.A. has consulted or served in an advisory role for Astellas Pharma, Novartis, Janssen, Sanofi, AstraZeneca, Pfizer, Bristol-Myers Squibb, Tolmar, Telix Pharmaceuticals, Merck Sharpe & Dohme, Bayer, Ipsen, Merck Serono, Amgen, Noxopharma, Aculeus Therapeutics and Daiichi Sankyo, participated in a speakers' bureau for Astellas Pharma, Novartis, Amgen, Bayer, Janssen, Ipsen, Bristol-Myers Squibb and Merck Serono, received travel funding from Astellas Pharma, Sanofi, Merck Serono, Amgen, Janssen, Tolmar, Pfizer, Bayer and Hinova Pharmaceuticals, received honoraria from Janssen, Astellas Pharma, Novartis, Tolmar, Amgen, Pfizer, Bayer, Telix Pharmaceuticals, Bristol-Myers Squibb, Merck Serono, AstraZeneca, Sanofi, Ipsen, Merck Sharpe & Dohme, Noxopharm, Aculeus Therapeutics and Daiichi Sankyo, and received research funding Astellas Pharma (institutional), Merck Serono (institutional), Novartis (institutional), Pfizer (institutional), Bristol-Myers Squibb (institutional), Sanofi (institutional), AstraZeneca (institutional), GlaxoSmithKline (institutional), Aptevo Therapeutics (institutional), MedImmune (institutional), Bionomics (institutional), Synthorx (institutional), Astellas Pharma (institutional), Ipsen (institutional), Merck Serono (institutional), Lilly (institutional), Gilead Sciences (institutional), Exelixis (institutional), MSD (institutional) and Hinova Pharmaceuticals (institutional). A.W.W. has received honoraria from Janssen, Astellas Pharma, AstraZeneca, Merck, Bayer, Pfizer and EMD Serono, and received research funding from Promontory Therapeutics (institutional), ESSA Pharma (institutional) and Tyra Biosciences (institutional). The other authors declare no competing interests.

## **Additional information**

**Extended data** is available for this paper at https://doi.org/10.1038/s41591-025-03704-9.

**Supplementary information** The online version contains supplementary material available at https://doi.org/10.1038/s41591-025-03704-9.

**Correspondence and requests for materials** should be addressed to Ian D. Davis, Michael S. Hofman, Arun A. Azad or Alexander W. Wyatt.

**Peer review information** *Nature Medicine* thanks David Miyamoto, Oliver Sartor and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Ulrike Harjes, in collaboration with the *Nature Medicine* team.

**Reprints and permissions information** is available at www.nature.com/reprints.



**Extended Data Fig.1 CONSORT diagram for sequencing and enrolment.** CONSORT diagram of participant and sample flow culminating in the formation of the biomarker participant population.



**Extended Data Fig. 2** | **ctDNA% versus baseline PET imaging variables.** Correlation between ctDNA% and four quantitative PET imaging variables. Spearman's rho (two-sided) is reported for each comparison, with p-values adjusted using Bonferroni correction ( $\alpha = 0.05$ , m = 3; correcting for three

pairwise comparisons within each imaging modality). A grey line represents the linear regression to illustrate the bivariate relationships. FDG, 2-[<sup>18</sup>F]fluoro-2-deoxy-D-glucose; MTV, metabolic tumour volume; PSMA, prostate-specific membrane antigen; SUV, standardised uptake value.



Extended Data Fig. 3 | *PTEN, TP53,* and *BRCA2* structural variants. Examples of structural variants and associated focal copy number alterations in (a) *PTEN*, (b) *TP53,* and (c) *BRCA2*. SNP, single nucleotide polymorphism.



**Extended Data Fig. 4** | **Relationship between ctDNA% and molecular imaging variables by** *PTEN* **and** *TP53* **status.** Correlation between ctDNA% and two quantitative PET imaging variables (PSMA SUVmean - top, FDG MTV - bottom), stratified by genomic alteration status (PTEN - left, TP53 - right).



Extended Data Fig. 5 | PFS and OS by TP53 and PTEN alteration status in all-comers. Kaplan-Meier estimates of progression-free survival and overall survival stratified by (a) TP53 alteration status and (b) PTEN alteration status. Each survival curve includes estimates for three-levels: ctDNA <2%, intact status, and altered status. In-set summary bar plots in the progression-free survival curves represent the proportion of patients that experienced a PSA50 and PSA90

response. An alteration is defined as any mutation(s) or structural variant(s), deep deletion, or expected null gene status. Monoallelic deletions in isolation were not considered altered. In-set tables show univariable hazard ratios from a Cox proportional hazards model. CI, confidence interval; HR, hazard ratio; mPFS, median progression-free survival; NR, not reached; OS, overall survival; PFS, progression-free survival; PSA, prostate-specific antigen; Ref, reference.



Extended Data Fig. 6 | See next page for caption.

**Extended Data Fig. 6** | **PFS and OS by** *A***R alteration status in all-comers.** Kaplan-Meier estimates of progression-free survival and overall survival stratified by (**a**) *AR* gain (defined as  $\geq$ 4 absolute AR copies) status, (**b**) presence of *AR* LBD GSRs, and (**c**) *AR* LBD mutation status. Each survival curve includes estimates for threelevels: ctDNA <2%, intact status, and altered status. In-set summary bar plots in the progression-free survival curves represent the proportion of patients that experienced a PSA50 and PSA90 response. In-set tables show univariable hazard ratios from a Cox proportional hazards model. CI, confidence interval; HR, hazard ratio; GSR, gene structural rearrangement; LBD, ligand binding domain; mPFS, median progression-free survival; NR, not reached; OS, overall survival; PFS, progression-free survival; PSA, prostate-specific antigen; Ref, reference.

#### https://doi.org/10.1038/s41591-025-03704-9

Hazard Ratio

(95% CI)

1.0 (0.74-1.5) 0,815

1.1 (0.68-1.8) 1.0 (0.64-1.6) 0.717

0.94 (0.56-1.6) 0,801

1.0 (0.65-1.6) 1.1 (0.66-1.8) 0.939

1.1 (0.69-1.7) 0.704

0.92 (0.32-2.6) 0.871

1.1 (0.75-1.5)

0.71 (0.14-3.6) 0.674

0.85 (0.51-1.4)

1.2 (0.78-1.9) 0.96 (0.51-1.8)

1.2 (0.74-1.9) 0,478

1.1 (0.71-1.7) 0.95 (0.57-1.6) 0.643

1.3 (0.58-2.8) 0.584

0.97 (0.67-1.4) 0.858

1.1 (0.58-2.1) 0.743

1.1 (0.74–1.7) 0.82 (0.45–1.5) 0,637

0.5 1.0 1.5 HR (95% CI) 2.0 p

0.746

0.559

0,403 0,885

LuPSMA, mediar

months (95% CI)

16.4 (13.7 - 20.1)

17.5 (14.8 = 26.3) 15.3 (9.9 = 20.8)

20,1 (16,0 - 36,2)

14.2 (10.8 - 17.9) 20.8 (16.4 - 32.3)

11.9 (9.5 - 16.4)

15.1 (11.6 – NR) 16.4 (13.7 – 21.2)

16.4 (14.8 - 20.1)

7.0 (3.4 - NR)

21.2 (16.2 - 34.4)

13.7 (10.8 = 17.5) 16.4 (13.7 = NR)

14.9 (10.8 - 20.8)

15.3 (12.3 - 22.3) 16.5 (13.7 - 28.4)

26.3 (16.4 - NR)

15.1 (12.3 - 18.5) 14.8 (11.7 - 17.5)

20.1 (16.2 - 36.2)

18.5 (16.2 - 26.3)

9.9 (8.3 - 17.9)

Overal surviva

months (95% CI)

19.8 (17.6 - 24.3)

24.6 (17.8 - 28.1) 18.4 (12.7 - 21.7)

23,1 (19,8 - 27,7)

16.6 (12.1 - 20.1) 24.9 (20.0 - 29.5)

13.6 (10.1 - 19.8)

20.0 (12.7 - NR) 19.8 (17.7 - 24.6)

19.8 (17.7 - 24.6)

18.4 (16.6 - 27.7)

20.3 (14.0 = 24.6) 19.3 (15.5 = 25.2)

19,4 (14,0 - 26,7)

19.4 (14.0 - 26.3) 19.8 (17.6 - 26.7)

27.7 (25.2 = NR)

17.8 (13.6 - 20.4) 18.0 (12.9 - 23.1)

23.6 (19.4 - NR)

24.3 (19.8 - 27.3) 11.5 (8.3 - 17.6)

8.0 (1.8 - NR)

LUPSMA

(n/N)

75/96

39/50 36/46

28/43

47/53

37/53

38/43

7/9 68/87

72/90

34 28/41

47/55 18/24

42/52

42/52 33/44

13/21 62/75 51/62

24/34

51/69 24/27

Cal

(n/N)

65/82

30/39 35/43

32/37 28/40

37/42

7/9 58/73

62/79 3/3 28/39

37/43 22/27

29/37

stases 54/62 <10 50/59 210 15/23

c01 >95

≥127 33/45

<127 <127 s115 >115 Absent Present

Absent

Present

1-2 57

≥8 31/41

\$72 >72 36/45

stases 11/20

<200mL ≿200mL 45/60

0 or unknown

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PSA50 re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | enonse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\sim$            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Cohoritoval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cabazitaval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | горяма                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LUDSMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        | Order ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\mathbf{C}$      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (n/N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | % (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (n/N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | % (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | U                 |
| Al patients                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 37/82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 45% (34-57)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 63/96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 60% (55-75)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        | 2.3 (1.3-4.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A natients        |
| PSA (ng/mL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 17/39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 44% (28-60)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 35/50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 70% (55-82)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        | 3.0 (1.3-7.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PSA (no/mL)       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | >95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20(43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 47% (31-62)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 28/46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 61% (45-75)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        | 1.8 (0.77-4.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |
| Haemoclobin (c)L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ≥127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 21/45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 47% (32-62)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 28/43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 65% (49-79)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        | 2.1 (0.9-5.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.091                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Haemoglobin (g/l  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 16/37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 43% (27-61)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 35/53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 66% (52-78)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        | 2.6 (1.1-6.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.051                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |
| ALP (UL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 24/40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 60% (43-75)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 40/53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 75% (62-86)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        | 2.1 (0.84-5.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ALP (U/L)         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | >115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13/42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 31% (18-47)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 23/43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 53% (38-69)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        | 2.6 (1.1-6.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.048                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |
| Bone metastases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Absent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5/9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 56% (21-86)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6/9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 67% (30-93)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        | 1.6 (0.24-11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Bone metastases   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Present                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 32/73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 44% (32-56)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 57/87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 66% (55-75)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        | 2.4 (1.3-4.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |
| Liver metastases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Absent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 37/79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 47% (36-58)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 60/92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 65% (55-75)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        | 2.1 (1.1-3.9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Liver metastases  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Present                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0% (0-71)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 75% (19-99)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        | Infinite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.143                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |
| ECOG PS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 or unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18/39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 46% (30-63)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30/41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 73% (57-96)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        | 3.2 (1.2-8.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ECOG PS           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 19/43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 44% (29-80)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 33/55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 60% (46-73)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | , <b>L</b> ∎Ľ                          | 1.9 (0.84-4.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |
| Gleason score                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14/27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 52% (32-71)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 17/24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 71% (49-87)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        | 2.3 (0.71-7.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Gleason score     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15/41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 37% (22-53)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30/52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 58% (43-71)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        | 24(10-55)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |
| Ane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 19(45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 42% (28-58)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30/52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 58% (43-71)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        | 19/083-421                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 400               |
| nge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 372                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 18/37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 42% (20-55)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 33/44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 75% (80-87)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        | 3.2 (1.2-8.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -19e              |
| Disease husing (DSMA_DET)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <72 c20 motostosos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10/37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 46% (32-00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 73% (00-87)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        | 1.0 (0.40-0.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.621                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Disease humbre (  |
| Disease Double (Follow FET)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -20 meteologie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 08/80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3339 (32, 77)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10/78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0739 (43-03)<br>eeux (43-26)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        | 0.6 (6.9 8.9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Crossage Corden ( |
| 00111 0101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | >20 metastases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20/02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 42% (30-55)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 40175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 60% (03-76)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        | 4.7 (0.04 0.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 00144-0181        |
| PoinA SOVmean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 23/59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 59% (27-53)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 32/62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 52% (39-05)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | T.E.                                   | 1.7 (0.01-3.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Powe Suvmean      |
| 500 MPL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14/23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 61% (39-80)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 31/34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 91% (76-98)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        | 6.6 (1.6-28)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CDO MITI          |
| PDG MTV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <200mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 31/60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 52% (30=05)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 40/09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 70% (57=80)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        | 2.1 (1.0-4.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.04/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PDG MTV           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2200mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6/22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2/% (11=50)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15/27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 56% (35 <del>-</del> 75)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        | 3.3 (1.0=11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.081                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.1 0.5 1.0 2.0 4.0 8.0<br>OR (95% CI) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |
| D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Progression-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | free surviv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |
| В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Cabazitaxel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Progression−I<br>CabazitaxeI, median                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | free surviv<br>LuPSMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | a <b>l</b><br>LuPSMA, median                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        | Hazard Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |
| В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Cabazitaxel<br>(n/N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Progression-I<br>Cabazitaxel, median<br>months (95% Cl)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | free surviv<br>LuPSMA<br>(n/N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | al<br>LuPSMA, median<br>months (95% Cl)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        | Hazard Ratio<br>(95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ρ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |
| <b>B</b><br>Al patients                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Cabazitaxel<br>(n/N)<br><sup>79/82</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Progression-<br>Cabazitaxel, median<br>months (95% CI)<br>4.8 (2.9 – 6.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | free surviv<br>LuPSMA<br>(n/N)<br>90/96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | al<br>LuPSMA, median<br>months (95% Cl)<br>5.1 (3.4 – 6.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - <b>+</b> -                           | Hazard Ratio<br>(95% CI)<br>0.64 (0.46-0.87)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>P</b><br>0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |
| B<br>Al patients<br>PSA (rigrimL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | s95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Cabazitaxel<br>(n/N)<br>79/82<br>38/39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Progression-1<br>Cabazitaxel, median<br>months (95% Cl)<br>4.8 (2.9 - 6.0)<br>3.1 (2.3 - 6.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | free surviv<br>LuPSMA<br>(n/N)<br>90/96<br>47/50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | al<br>LuPSMA, median<br>months (95% Cl)<br>5.1 (3.4 - 6.5)<br>5.3 (4.0 - 8.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        | Hazard Ratio<br>(95% CI)<br>0.64 (0.46–0.87)<br>0.55 (0.35–0.87)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>P</b><br>0.005<br>0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |
| B<br>Al patients<br>PSA (ng/mL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | s95<br>>95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cabazitaxel<br>(n/N)<br>79/82<br>38/39<br>41/43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Progression-1<br>Cabazitaxel, median<br>months (95% Cl)<br>4.8 (2.9 - 6.0)<br>3.1 (2.3 - 6.4)<br>5.2 (2.9 - 7.8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | free surviv<br>LuPSMA<br>(n/N)<br>90/96<br>47/50<br>43/46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | al<br>LuPSMA, median<br>months (95% Cl)<br>5.1 (3.4 - 6.5)<br>5.3 (4.0 - 8.4)<br>3.6 (3.0 - 8.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        | Hazard Ratio<br>(95% CI)<br>0.64 (0.46-0.87)<br>0.55 (0.35-0.87)<br>0.72 (0.46-1.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | P<br>0.005<br>0.010<br>0.154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |
| B<br>Al patents<br>PSA (ng/mL)<br>Haemoglobin (g/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | s95<br>>95<br>≥127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cabazitaxel<br>(n/N)<br>79/82<br>38/39<br>41/43<br>44/45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Progression-<br>Cabazitaxel, median<br>months (95% CI)<br>4.8 (2.9 - 6.0)<br>3.1 (2.3 - 6.4)<br>5.2 (2.9 - 7.8)<br>5.5 (2.9 - 7.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | free surviv<br>LuPSMA<br>(n/N)<br>90/96<br>47/50<br>43/46<br>38/43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | al<br>LuPSMA, median<br>months (95% Cl)<br>5.1 (3.4 - 6.5)<br>5.3 (4.0 - 8.4)<br>3.6 (3.0 - 8.3)<br>6.7 (3.3 - 10.7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        | Hazard Ratio<br>(95% Cl)<br>0.64 (0.46=0.87)<br>0.55 (0.35=0.87)<br>0.72 (0.46=1.1)<br>0.50 (0.31=0.8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | P<br>0.005<br>0.010<br>0.0154<br>0.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |
| B<br>Al patents<br>PSA (ng/mL)<br>Haemoglobin (g/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | s95<br>>95<br>≥127<br><127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cabazitaxel<br>(n/N)<br>79/82<br>38/39<br>41/43<br>44/45<br>35/37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Progression-I<br>Cabazitaxel, median<br>months (95% Cl)<br>4.8 (20 – 6.0)<br>3.1 (2.3 – 6.4)<br>5.2 (20 – 7.8)<br>5.5 (20 – 7.2)<br>3.0 (2.1 – 6.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | free surviv<br>LuPSMA<br>(n/N)<br>90/96<br>47/50<br>43/46<br>38/43<br>52/53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | al<br>LuPSMA, median<br>months (95% Cl)<br>5.1 (3.4 - 6.5)<br>5.3 (4.0 - 6.4)<br>3.6 (3.0 - 6.3)<br>6.7 (3.3 - 10.7)<br>4.5 (3.2 - 5.7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        | Hazard Ratio<br>(95% Cl)<br>0.64 (0.46–0.87)<br>0.72 (0.46–1.1)<br>0.50 (0.31–0.8)<br>0.77 (0.40–1.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | P<br>0.005<br>0.154<br>0.004<br>0.233                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |
| B<br>Al patents<br>PSA (rojmL)<br>Haemoglobin (gA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ≲95<br>>95<br>≿127<br><127<br>≤115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cabazitaxel<br>(n/N)<br>79/82<br>38/39<br>41/43<br>44/45<br>35/37<br>39/40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Progression-I<br>Cabazitaxel, median<br>months (95% Cl)<br>4.8 (2.9 - 6.0)<br>3.1 (2.3 - 6.4)<br>5.2 (2.9 - 7.8)<br>5.5 (2.9 - 7.2)<br>3.0 (2.1 - 6.0)<br>5.7 (4.5 - 7.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | free surviv<br>LuPSMA<br>(n/N)<br>90/96<br>47/50<br>43/46<br>38/43<br>52/53<br>50/53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | al<br>LuPSMA, modian<br>months (95% Cl)<br>5.1 (3.4 - 6.5)<br>5.3 (4.0 - 6.4)<br>3.6 (3.0 - 6.3)<br>6.7 (3.3 - 10.7)<br>4.5 (3.2 - 5.7)<br>6.9 (5.2 - 10.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        | Hazard Ratio<br>(95% Cl)<br>0.64 (0.46–0.87)<br>0.72 (0.46–1.1)<br>0.50 (0.31–0.8)<br>0.77 (0.40–1.2)<br>0.51 (0.32–0.81)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | P<br>0.005<br>0.016<br>0.054<br>0.004<br>0.233<br>0.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |
| B<br>Al patients<br>PSA (regint.)<br>Hatemodebin (p.L.)<br>ALP (UL.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ≲95<br>>95<br>≿127<br><127<br>≤115<br>≻115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cabazitaxel<br>(n/N)<br>79/82<br>38/39<br>41/43<br>44/45<br>35/37<br>38/40<br>40/42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Progression -4<br>Cabacitaxet, median<br>months (95% d)<br>4.8(20 - 0.0)<br>3.1(2.3 - 0.0)<br>5.6(20 - 7.3)<br>3.0(21 - 0.0)<br>3.7(1.5 - 5.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | free surviv<br>LuPSMA<br>(n/N)<br>50/96<br>47/50<br>43/46<br>38/43<br>52/53<br>50/53<br>40/43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | al<br>LuPSMA, median<br>months (95% Cl)<br>5.1 (3.4 – 6.6)<br>5.3 (4.0 – 8.4)<br>6.7 (3.3 – 10.7)<br>6.7 (3.3 – 10.7)<br>6.3 (5.2 – 10.5)<br>3.1 (2.8 – 5.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        | Hazard Ratio<br>(95% Cl)<br>0.64 (0.46=0.87)<br>0.55 (0.35=0.87)<br>0.72 (0.46=1.1)<br>0.50 (0.31=0.8)<br>0.77 (0.49=1.2)<br>0.51 (0.32=0.81)<br>0.80 (0.51=1.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | P<br>0.005<br>0.010<br>0.154<br>0.004<br>0.233<br>0.004<br>0.338                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |
| B<br>Al patients<br>PSA (rg/mL)<br>Heemoglobin (pL)<br>ALP (UL)<br>Bone metatases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | s95<br>≥95<br>≥127<br><127<br>≤115<br>>115<br>Absent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Cabazitaxel<br>(n/N)<br>79/82<br>38/39<br>41/43<br>44/45<br>35/37<br>38/40<br>40/42<br>8/9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Progression=1<br>Cabazitazet, median<br>monthe (95% CI)<br>4.8 (2.9 – 6.0)<br>5.2 (2.8 – 7.8)<br>5.8 (2.9 – 7.2)<br>5.7 (4.5 – 7.4)<br>2.7 (4.6 – 5.9)<br>5.1 (0.9 – 848)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | free surviv<br>LuPSMA<br>(n/N)<br>90/96<br>47/50<br>43/46<br>38/43<br>52/53<br>50/53<br>40/43<br>9/9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A<br>LuPSMA, median<br>motifies (95% CI)<br>5.1 (3A - 6.5)<br>5.3 (40 - 6.3)<br>6.7 (33 - 10.7)<br>4.5 (32 - 5.7)<br>6.9 (52 - 10.5)<br>3.1 (28 - 5.4)<br>3.3 (32 - NR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        | Hazard Ratio<br>(95% Cl)<br>0.64 (0.46=0.87)<br>0.55 (0.35=0.87)<br>0.72 (0.46=1.1)<br>0.50 (0.31=0.8)<br>0.77 (0.49=1.2)<br>0.51 (0.32=0.81)<br>0.80 (0.51=1.3)<br>0.50 (0.17=1.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | P<br>0.005<br>0.010<br>0.054<br>0.004<br>0.033<br>0.004<br>0.038<br>0.038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |
| B<br>Al patents<br>PSK (right.)<br>Heemodetin (g/L)<br>ALP (UL)<br>Bone metalatises                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$95<br>>95<br>≥127<br><127<br>≤115<br>>115<br>Absent<br>Present                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Cabazitaxel<br>(n/N)<br>78/82<br>38/39<br>41/43<br>44/45<br>35/37<br>38/40<br>40/42<br>8/9<br>71/73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Progression –<br>Cabaztav, median<br>montas (95%, Cl)<br>4.2 (2.3 – 6.4)<br>5.2 (2.3 – 7.8)<br>5.2 (2.3 – 7.8)<br>5.2 (2.3 – 7.4)<br>2.7 (4.5 – 7.4)<br>1.2 (2.7 – 6.9)<br>1.1 (0.3 – 8.8)<br>5.1 (2.2 – 6.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | free surviv<br>LuPSMA<br>(n/N)<br>90/96<br>47/50<br>43/46<br>38/43<br>52/53<br>50/53<br>40/43<br>9/9<br>81/87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | a<br>LuPSMA, median<br>months (95% Cl)<br>5.1 (34 – 6.8)<br>5.3 (40 – 6.4)<br>5.3 (40 – 6.4)<br>5.3 (32 – 5.7)<br>6.3 (52 – 10.5)<br>1.1 (25 – 5.4)<br>5.3 (32 – 5.4)<br>5.3 (32 – 5.4)<br>5.3 (32 – 5.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        | Hazard Ratio<br>(95% CI)<br>0.84 (0.40-0.87)<br>0.55 (0.35-0.87)<br>0.72 (0.40-1.1)<br>0.50 (0.31-0.8)<br>0.77 (0.49-1.2)<br>0.51 (0.32-0.81)<br>0.50 (0.17-1.5)<br>0.84 (0.46-0.89)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | P<br>0.055<br>0.010<br>0.204<br>0.233<br>0.239<br>0.239<br>0.239                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |
| B<br>Ar patents<br>PSA (rojmt.)<br>Haemoglobin (gK)<br>ALP (UK)<br>Bore metastases<br>Liver metastases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 195<br>>95<br>≿127<br>≤115<br>>115<br>Absent<br>Absent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cabazitaxel<br>(n/N)<br>79/82<br>38/39<br>41/43<br>44/45<br>35/37<br>35/40<br>40/42<br>8/9<br>71/73<br>76/79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Progression-1<br>Chaotizet, median<br>months (95%, Cl)<br>4.8 (2.3 – 6.0)<br>3.1 (2.3 – 6.4)<br>4.2 (2.4 – 7.2)<br>3.0 (2.1 – 6.0)<br>3.7 (4.5 – 7.4)<br>3.2 (1.5 – 6.6)<br>3.1 (2.9 – 6.6)<br>3.1 (2.9 – 6.6)<br>3.1 (2.9 – 6.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | free surviv<br>LuPSMA<br>(n/N)<br>50096<br>47/50<br>43/46<br>38/43<br>52/53<br>50/53<br>40/43<br>9/9<br>81/87<br>86/92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LuSAA, median<br>months (95% Cl)<br>5.1 (34 – 6.4)<br>5.3 (4.0 – 8.4)<br>6.7 (33 – 10.7)<br>6.9 (52 – 10.6)<br>5.1 (2.8 – 5.4)<br>3.3 (32 – NR)<br>5.2 (35 – 6.6)<br>5.2 (35 – 6.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        | Hazard Ratio<br>(95% CI)<br>0.56 (0.46-0.87)<br>0.55 (0.35-0.87)<br>0.72 (0.40-1.2)<br>0.72 (0.40-1.2)<br>0.51 (0.32-0.81)<br>0.80 (0.51-1.3)<br>0.50 (0.51-1.5)<br>0.84 (0.46-0.89)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | P<br>0.050<br>0.054<br>0.054<br>0.054<br>0.054<br>0.054<br>0.059                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |
| B<br>Al patient:<br>PAA (romit)<br>Haemodelin (pC)<br>ALP (UK)<br>Elore metastases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | . \$95<br>≥127<br><127<br><127<br>>115<br>>115<br>Absent<br>Present<br>Present                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cabazitaxel<br>(n/N)<br>78/82<br>38/39<br>41/43<br>41/43<br>44/45<br>44/45<br>44/45<br>44/45<br>44/45<br>46/42<br>8/9<br>71/73<br>76/79<br>3/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Progression-J<br>Cabazitasel, median<br>months (95% Cl)<br>4.8 (2.9 – 6.0)<br>3.1 (2.3 – 6.4)<br>4.2 (2.9 – 6.4)<br>5.2 (2.9 – 7.4)<br>3.2 (2.1 – 6.0)<br>5.2 (1.6 – 6.4)<br>5.1 (2.9 – 6.4)<br>5.1 (2.9 – 6.4)<br>1.1 (2.0 – 6.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | free surviv<br>LuPSMA<br>(n/N)<br>5036<br>47/50<br>43/46<br>38/43<br>52/53<br>50/53<br>40/43<br>9/9<br>81/87<br>86/92<br>4/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A<br>LuPSAA, modian<br>months (95% Cl)<br>5.1(34 – 6.5)<br>5.3(40 – 6.3)<br>6.7(33 – 10.7)<br>4.5(32 – 5.4)<br>6.9(52 – 10.5)<br>3.1(28 – 5.4)<br>3.2(32 – NR)<br>5.2(35 – 6.6)<br>3.0(15 – NR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        | Hazard Ratio<br>(95% Cl)<br>0.64 (0.6–0.87)<br>0.55 (0.5–0.87)<br>0.72 (0.46–1.1)<br>0.30 (0.31–0.3)<br>0.77 (0.40–1.2)<br>0.51 (0.32–0.81)<br>0.80 (0.51–1.3)<br>0.80 (0.51–1.5)<br>0.84 (0.46–0.89)<br>0.85 (0.47–0.91)<br>0.51 (0.151–0.51)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | P<br>0.005<br>0.154<br>0.004<br>0.230<br>0.004<br>0.230<br>0.039<br>0.009<br>0.009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |
| B<br>Al patients<br>PSA InpinE.<br>Heremodelin (q-L)<br>ALP (UL)<br>Bore metastases<br>Liker metastases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | s95<br>≥95<br>≥127<br>≤127<br>≤115<br>>115<br>Absent<br>Absent<br>Absent<br>Present<br>Present                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cabazitaxel<br>(n/N)<br>78/82<br>8/39<br>4/143<br>4/45<br>35/37<br>35/37<br>4/042<br>8/9<br>71/73<br>76/79<br>3/3<br>38/39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Progression-I<br>Cabazitaxei, median<br>montha: (85% CI)<br>4.8 (24 - 80)<br>3.1 (23 - 84)<br>5.8 (24 - 72)<br>3.0 (24 - 84)<br>3.7 (45 - 74)<br>2.7 (45 - 74)<br>2.7 (45 - 74)<br>2.1 (25 - 84)<br>5.1 (25 | free surviv<br>LuPSMA<br>(n/N)<br>9036<br>47/50<br>43/46<br>38/43<br>52/53<br>50/53<br>40/43<br>9/9<br>81/87<br>88/92<br>4/4<br>39/41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A<br>LuPSMA, median<br>months (95% Cl)<br>5.1 (24 - 6.5)<br>5.3 (40 - 6.4)<br>5.4 (40 - 6.4)<br>5.7 (32 - 10.5)<br>6.9 (52 - 10.5)<br>5.3 (12 - 6.9)<br>5.2 (13 - 6.9)<br>5.2 (13 - 6.9)<br>5.2 (13 - 6.9)<br>5.3 (12 - 8.1)<br>5.2 (13 - 6.9)<br>5.4 (15 - 10.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        | Hazard Ratio<br>(95% CI)<br>0.64 (0.40-0.87)<br>0.55 (0.35-0.05)<br>0.72 (0.40-1.1)<br>0.51 (0.32-0.8)<br>0.71 (0.40-1.2)<br>0.51 (0.32-0.3)<br>0.50 (0.51-0.1)<br>0.54 (0.46-0.89)<br>0.56 (0.47-0.1)<br>0.13 (0.013-1.3)<br>0.50 (0.51-0.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | P<br>0.055<br>0.050<br>0.054<br>0.054<br>0.054<br>0.030<br>0.039<br>0.039<br>0.039                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |
| B<br>Al patients<br>PRA (regim).<br>ALP (UL)<br>Bore metadatases<br>Liver metadatases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 595<br>>95<br>2127<br>≤115<br>>115<br>>15<br>Present<br>Present<br>0 or unknown<br>1−2−                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cabazitaxel<br>(n/N)<br>79:82<br>38:39<br>41:43<br>44:45<br>38:37<br>38:40<br>40:42<br>8:9<br>40:42<br>8:9<br>71:73<br>76:79<br>3:3<br>38:39<br>41:43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Progression-4           Cabazitasel, median<br>montas (85%, Cl)           14 (2, 4)            12 (2, 2)            12 (2, 2)            12 (2, 2)            12 (2, 2)            12 (2, 2)            12 (2, 2)            12 (2, 2)            12 (2, 2)            12 (2, 2)            12 (2, 2)            12 (2, 2)            12 (2, 2)            12 (2, 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | free surviv<br>LuPSMA<br>(n/N)<br>9036<br>47/50<br>43/46<br>38/43<br>50/53<br>50/53<br>60/53<br>8/43<br>8/187<br>8/65<br>2/44<br>3/041<br>51/55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A<br>LuPSMA, modian<br>months (95% C1)<br>5.3 (40 – 6.6)<br>5.3 (40 – 6.4)<br>5.3 (40 – 6.4)<br>6.4 (32 – 6.7)<br>6.3 (52 – 10.5)<br>3.3 (125 – 5.4)<br>3.3 (125 – 5.4)<br>5.2 (35 – 6.9)<br>5.2 (35 – 6.9)<br>5.2 (35 – 6.5)<br>3.0 (12 – NR)<br>6.9 (12 – NR)<br>6.9 (12 – NR)<br>5.2 (35 – 10.5)<br>3.0 (12 – NR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        | Hazard Ratio<br>(85% (24)<br>0.54 (0.40-0.37)<br>0.55 (0.35-0.37)<br>0.72 (0.46-1.2)<br>0.51 (0.32-0.31)<br>0.80 (0.51-1.3)<br>0.80 (0.71-1.5)<br>0.84 (0.46-0.89)<br>0.85 (0.47-0.9)<br>0.13 (0.81-1.3)<br>0.59 (0.31-0.31)<br>0.59 (0.31-0.31)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | P<br>0.005<br>0.010<br>0.044<br>0.033<br>0.004<br>0.033<br>0.039<br>0.039<br>0.009<br>0.007<br>0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |
| B<br>Al patents<br>PSC regimt.)<br>Heremodelin (pCL)<br>ALP (UL)<br>Bore metalatass<br>Liver metalatass<br>ECOO PS<br>Observe score                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 595<br>295<br>2127<br>4127<br>4115<br>2115<br>2415<br>2415<br>2415<br>2415<br>2415<br>2415                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cabazitaxel<br>(n/N)<br>7882<br>38/39<br>41/43<br>44/45<br>38/37<br>44/45<br>46/42<br>8/9<br>46/42<br>8/9<br>71/73<br>3/3<br>38/39<br>41/43<br>28/27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Progression-1<br>Cabazitazet, median<br>mottes (935, Cd)<br>42, Cd2 - 0, Cd)<br>42, Cd2 - 0, Cd)<br>42, Cd2 - 2, Cd)<br>42, Cd2 - 2, Cd)<br>42, Cd2 - 2, Cd)<br>42, Cd2 - 2, Cd)<br>41, Cd2 - 4, Cd)<br>42, Cd2 - 2, Cd)<br>43, Cd2 - 2, Cd)<br>44, Cd2 - 2,                                                                                                                                                                                                                  | free surviv<br>LuPSMA<br>(n/N)<br>5036<br>47/50<br>43/46<br>38/43<br>50/53<br>50/53<br>40/43<br>9/9<br>81/87<br>86/92<br>4/4<br>39/41<br>51/85<br>23/24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | a<br>LuPSAA, median<br>months (89% C))<br>5.1 (JA – 6.0)<br>5.2 (JA – 6.0)<br>5.2 (JA – 6.0)<br>4.5 (32 – 5.7)<br>4.5 (32 – 5.7)<br>1.2 (JA – 5.4)<br>1.2 (JA –                                                                                                                                                                                                                                                                                                             |                                        | Hazard Ratio<br>(95% Cl)<br>0.56 (0.36~0.87)<br>0.55 (0.35~0.87)<br>0.72 (0.46~1.91)<br>0.50 (0.31~0.82)<br>0.77 (0.46~1.92)<br>0.81 (0.25~1.92)<br>0.84 (0.46~0.98)<br>0.85 (0.47~0.91)<br>0.85 (0.47~0.91)<br>0.13 (0.015~1.91)<br>0.30 (0.51~0.81)<br>0.30 (0.51~0.81)                          | P<br>0.055<br>0.050<br>0.054<br>0.054<br>0.054<br>0.054<br>0.059<br>0.009<br>0.007<br>0.007<br>0.007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |
| B<br>Al patients<br>PRA regime).<br>Hearmogdatin (gal)<br>AliP (UL)<br>Brave indicatases<br>Liver matatases<br>ECOD PS<br>Gleeson score                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <ul> <li>895</li> <li>&gt;95</li> <li>&gt;127</li> <li>&lt;127</li> <li>&lt;115</li> <li>&gt;115</li> <li>&gt;115</li> <li>Absent</li> <li>Present</li> <li>O or usknown</li> <li>1−2</li> <li>&lt;17</li> <li>×8</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Cabazitaxel<br>(n/N)<br>7982<br>38/39<br>41/43<br>44/45<br>35/37<br>40/42<br>8/9<br>40/42<br>8/9<br>71/73<br>3/8/39<br>3/3<br>38/39<br>41/43<br>28/27<br>41/43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Progression-4           Cabazitaset, median<br>monte (d5% cl)           4.6 (2.6 - cl)           1.6 (2.6 - cl)           2.6 (2.6 - cl)           2.6 (2.6 - cl)           2.7 (1.6 - cl)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Iree Surviv<br>LuPSMA<br>(n/N)<br>90/96<br>47/50<br>43/46<br>43/46<br>43/46<br>43/46<br>43/46<br>40/53<br>9/9<br>86/92<br>4/4<br>39/41<br>51/65<br>23/24<br>49/52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A<br>LuPSMA (modian<br>months (95% C))<br>5.1 (24 – 6.5)<br>5.3 (40 – 6.5)<br>6.2 (24 – 6.5)<br>6.2 (24 – 6.5)<br>7.3 (24 – 6.5)<br>7.3 (24 – 6.5)<br>7.2                                                                                                                                                 |                                        | Hazard Ratio<br>(95% Cl)<br>0.54 (0.46–0.87)<br>0.55 (0.35–0.87)<br>0.72 (0.40–101)<br>0.35 (0.31–0.34)<br>0.35 (0.31–0.34)<br>0.30 (0.17–15)<br>0.46 (0.46–0.89)<br>0.35 (0.31–0.34)<br>0.35 (0.31–0.34)<br>0.35 (0.31–0.34)<br>0.35 (0.31–0.34)<br>0.37 (0.31–1.24)<br>0.37 (0.31–1.24)<br>0.37 (0.31–1.24)<br>0.37 (0.31–1.24)<br>0.37 (0.31–1.24)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | P<br>0.050<br>0.050<br>0.054<br>0.054<br>0.054<br>0.054<br>0.039<br>0.097<br>0.097<br>0.097<br>0.097<br>0.095                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |
| B<br>At patients<br>PSA (rojnet,)<br>Haemoptein (pC)<br>ALP (UL)<br>Erone metalatases<br>ECOLO PS<br>Clearon score<br>App                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 195<br>>35<br>≥127<br>4127<br>4127<br>×115<br>>115<br>Absent<br>Present<br>0 or uknown<br>0 or uknown<br>10 or 4<br>2<br>4<br>2<br>4<br>2<br>4<br>3<br>7<br>2<br>3<br>5<br>3<br>5<br>2<br>5<br>2<br>5<br>2<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Cabazitaxe1<br>(n/N)<br>78/82<br>38/39<br>41/43<br>35/37<br>38/40<br>40/42<br>71/73<br>76/79<br>3/3<br>76/79<br>3/3<br>38/39<br>41/43<br>28/67<br>40/42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Progression           Cabazitazet, median<br>montes (955, Cd)           42,623-600           42,623-600           42,624-600           42,624-600           42,624-600           42,624-600           42,624-600           42,624-600           42,624-600           41,624-600           41,624-600           42,624-600           42,624-600           42,624-600           42,624-600           42,624-600           42,624-600           42,624-600           42,624-600           42,624-600           43,624-600           43,624-600           43,624-600           43,624-600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Iree SURVIV<br>LUPSMA<br>(n/N)<br>90/96<br>47/50<br>43/46<br>43/46<br>43/46<br>43/46<br>43/47<br>85/93<br>86/93<br>86/93<br>86/93<br>86/93<br>86/93<br>4/4<br>4/4<br>23/44<br>51/55<br>23/24<br>4/9/52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A<br>LPSAL median<br>ments (95% C1)<br>5.(34-0-4.)<br>3.6(34-0-4.)<br>4.6(34-0-4.)<br>4.6(32-1.0.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)<br>4.7(34-0.4.)                                                                                                                                                                                                                                                                        |                                        | Hazard Ratio           (95% C1)           0.44 (0.46-0.57)           0.55 (0.35-0.37)           0.55 (0.35-0.37)           0.77 (0.46-1.2)           0.80 (0.71-0.37)           0.80 (0.71-0.37)           0.80 (0.71-0.37)           0.80 (0.71-0.37)           0.80 (0.71-0.37)           0.80 (0.71-0.37)           0.80 (0.71-0.37)           0.80 (0.71-0.37)           0.80 (0.71-0.37)           0.80 (0.71-0.37)           0.70 (0.81-1.37)           0.71 (0.81-1.37)           0.72 (0.71-1.37)           0.72 (0.71-1.37)           0.72 (0.71-1.37)           0.72 (0.71-1.37)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <ul> <li>р</li> <li>0.050</li> <li>0.054</li> <li>0.054</li> <li>0.054</li> <li>0.054</li> <li>0.054</li> <li>0.054</li> <li>0.054</li> <li>0.054</li> <li>0.057</li> <li>0.056</li> <li>0.154</li> <li>0.164</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |
| B<br>Al patients<br>PSA InpinE.)<br>Heremodelin (qaCi<br>AlP (UC)<br>Bore metastases<br>Eccor PS<br>Cleason score                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 195<br>> 25<br>≥ 127<br>< 127<br>> 115<br>Absent<br>Present<br>0 or urknown<br>1−2<br>= 27<br>≥ 8<br>= 32<br>> 272<br>> 272                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Cabazitaxel<br>(n/N)<br>78/82<br>38/39<br>41/83<br>41/83<br>45/87<br>41/83<br>35/87<br>8/9<br>41/83<br>38/89<br>41/83<br>38/89<br>41/83<br>38/89<br>41/83<br>38/89<br>41/83<br>38/87<br>41/83<br>38/87<br>41/83<br>38/89<br>41/83<br>38/89<br>41/83<br>38/89<br>41/83<br>38/89<br>41/83<br>38/89<br>41/83<br>38/89<br>41/83<br>38/89<br>41/83<br>38/89<br>41/83<br>38/89<br>41/83<br>38/89<br>41/83<br>38/89<br>41/83<br>38/89<br>41/83<br>38/89<br>41/83<br>38/89<br>41/83<br>38/89<br>41/83<br>38/89<br>41/83<br>38/89<br>41/83<br>38/89<br>41/83<br>38/89<br>41/83<br>38/89<br>41/83<br>38/89<br>41/83<br>38/89<br>41/83<br>38/89<br>41/83<br>38/89<br>41/83<br>38/89<br>41/83<br>38/89<br>41/83<br>38/89<br>41/83<br>38/89<br>41/83<br>38/89<br>41/83<br>38/89<br>41/83<br>38/89<br>41/83<br>38/89<br>41/83<br>38/89<br>41/83<br>38/89<br>41/83<br>38/89<br>41/83<br>38/89<br>41/83<br>38/89<br>41/83<br>38/89<br>41/83<br>38/89<br>41/83<br>38/89<br>41/83<br>38/89<br>41/83<br>38/89<br>41/83<br>38/89<br>41/83<br>38/89<br>41/83<br>38/89<br>41/83<br>38/89<br>41/83<br>38/89<br>41/83<br>38/89<br>41/83<br>38/89<br>41/83<br>38/89<br>41/83<br>38/89<br>41/83<br>38/89<br>41/83<br>38/89<br>41/83<br>38/89<br>41/83<br>38/89<br>41/83<br>38/89<br>41/83<br>38/89<br>41/83<br>38/89<br>41/83<br>38/89<br>41/83<br>38/89<br>41/83<br>38/89<br>41/83<br>38/89<br>41/83<br>38/89<br>41/83<br>38/89<br>41/83<br>38/89<br>41/83<br>38/89<br>41/83<br>38/89<br>41/83<br>38/89<br>41/83<br>38/89<br>41/83<br>38/89<br>41/84<br>38/89<br>41/84<br>38/89<br>41/84<br>38/89<br>41/84<br>38/84<br>38/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48/87<br>48 | Progression 4<br>Cabazitazet, median<br>motules (955, 42)<br>43, 62, 9-4, 03<br>43, 62, 9-4, 04<br>43, 62, 9-4, 04<br>43, 62, 9-4, 04<br>43, 62, 9-4, 04<br>41, 62, 9-4, 04<br>43, 62, 9-4, 04<br>44, 9-4, 04 44, 9-4, 04<br>44, 9-4, 9-4, 04<br>44, 9-4, 9-4, 0                                                                                                                                                                                   | Ince surviv           LuPSMA           (n/N)           90.96           43.46           3843           52.53           50.53           40.43           8487           8487           3341           5165           444           5165           43941           5165           43952           4144                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | LPPAL enclant<br>months (9% CI)<br>5.1 (4.1 – 6.3)<br>3.2 (4.2 – 8.4)<br>3.2 (4.2 – 8.4)<br>4.5 (2.2 – 5.7)<br>4.5 (2.2 – 5.7)<br>4.3 (2.4 – 5.4)<br>3.2 (2.4 – 5.4)<br>3                                                                                                                                                                            |                                        | Hazard Ratio<br>(95% CI)<br>0.54 (0.40-0.87)<br>0.55 (0.55-0.87)<br>0.72 (0.40-1.2)<br>0.51 (0.32-0.81)<br>0.51 (0.40-0.81)<br>0.50 (0.47-1.5)<br>0.40 (0.46-0.89)<br>0.43 (0.47-0.5)<br>0.45 (0.47-0.5)<br>0.45 (0.47-0.5)<br>0.45 (0.47-0.5)<br>0.45 (0.45-0.5)<br>0.45 (0.45-0.5)<br>0.4 | P<br>0.055<br>0.050<br>0.054<br>0.054<br>0.054<br>0.054<br>0.009<br>0.009<br>0.009<br>0.009<br>0.009<br>0.009<br>0.009<br>0.009<br>0.009<br>0.009<br>0.009<br>0.009<br>0.009<br>0.009<br>0.009<br>0.005<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.004<br>0.005<br>0.004<br>0.004<br>0.005<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.005<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.00 |                   |
| Ratenti<br>PA (rg/ht)<br>Haemodatin (g/L)<br>ALP (U/L)<br>Bore metatases<br>Liver metatases<br>Coco PS<br>Coco PS<br>Coco PS<br>Coco PS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 595<br>-25<br>2:117<br>-217<br>-2115<br>-2115<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-2020<br>-202                                                                                                                                                                                                                              | Cabazitaxel<br>(n/N)<br>79/82<br>41/43<br>44/45<br>45/43<br>44/45<br>40/42<br>8/9<br>71/73<br>76/79<br>71/73<br>76/79<br>38/39<br>41/43<br>28/37<br>41/43<br>28/27<br>41/43<br>45/45<br>43/43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Progression - 4 A (2004) A (20                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Iree Surviv<br>LuPSMA<br>(n/N)<br>5036<br>47/50<br>4346<br>47/50<br>5053<br>8053<br>8053<br>80167<br>88592<br>444<br>3941<br>51/55<br>23/24<br>4952<br>4952<br>41/44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A<br>DefPAI, median<br>mentes (89% Cf)<br>5.1 (24-63)<br>5.1 (24-64)<br>5.2 (24-                                                                                                                                                                                                                                                  |                                        | Hazard Ratio<br>(95% Cl)<br>0.55 (0.36–0.87)<br>0.55 (0.35–0.87)<br>0.57 (0.49–0.87)<br>0.77 (0.49–0.12)<br>0.80 (0.51–0.32)<br>0.85 (0.47–0.91)<br>0.85 (0.47–0.91)<br>0.85 (0.47–0.91)<br>0.75 (0.51–1.21)<br>0.87 (0.51–1.21)<br>0.87 (0.51–1.21)<br>0.87 (0.51–1.21)<br>0.87 (0.51–1.21)<br>0.71 (0.49–1.11)<br>0.72 (0.49–1.11)<br>0.73 (0.49–0.11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P<br>0.056<br>0.054<br>0.054<br>0.054<br>0.054<br>0.033<br>0.039<br>0.039<br>0.099<br>0.097<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |
| Research (Carlow (Carl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | . 195<br>>45<br>>127<br><127<br>≤115<br>>115<br>>105<br>Present<br>0 or urknown<br>0 or urknown<br>2 s2<br>2 s2<br>×52<br>>72<br>x20 mediatases<br>>20 mediatases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Cabazitaxel<br>(n/N)<br>7882<br>4143<br>4143<br>4445<br>4553<br>4042<br>4042<br>4042<br>4042<br>4042<br>4043<br>4043<br>404                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Progression-1           Cabazitazet, median<br>montes (ess. clu)           42.62-600           12.62-600           26.62-700           26.62-700           26.62-700           27.62-600           27.62-600           21.62-600           21.62-600           21.62-700           21.62-700           21.62-700           21.62-700           21.62-700           21.62-700           21.62-700           21.62-700           21.62-700           21.62-700           21.62-700           21.62-700           21.62-700           21.62-700           21.62-700           21.62-700           21.62-700           21.62-700           21.62-700           21.62-700           21.62-700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Iree Surviv<br>LuPSMA<br>(n/N)<br>5036<br>47/50<br>43346<br>3843<br>5253<br>5053<br>4043<br>81/67<br>88/92<br>4/4<br>33/41<br>51/65<br>23/24<br>49/52<br>49/52<br>49/52<br>41/14<br>20/21<br>70/75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | L LLPSAL exclam<br>monthe (SPK CI)<br>4.1 (AI – 6.0)<br>4.3 (AJ – 6.0)<br>4.3 (AJ – 5.0)<br>4.3 (AJ – 5.0)<br>5.3 (AJ – 5.0                                                                                                                                                                                                                                                                                                             |                                        | Hazard Ratio<br>(95% Cl)<br>0.64 (0.46-0.87)<br>0.59 (0.35-0.87)<br>0.59 (0.35-0.87)<br>0.79 (0.46-12)<br>0.80 (0.51-0.8)<br>0.80 (0.51-0.8)<br>0.80 (0.51-0.8)<br>0.80 (0.47-0.8)<br>0.80 (0.47-0.8)<br>0.80 (0.47-0.8)<br>0.80 (0.47-0.8)<br>0.80 (0.47-0.8)<br>0.80 (0.48-0.8)<br>0.71 (0.46-1.1)<br>0.72 (0.47-1.1)<br>0.72 (0.47-1.1)<br>0.72 (0.47-1.1)<br>0.72 (0.47-1.1)<br>0.89 (0.38-0.8)<br>0.80 ( | P           0.050           0.051           0.052           0.054           0.053           0.054           0.053           0.054           0.055           0.056           0.056           0.057           0.056           0.057           0.056           0.057           0.058           0.058           0.058           0.058           0.058           0.058           0.058           0.058                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |
| RemodelingLi<br>PerkangelsingLi<br>HeemodelingLi<br>AP(UL)<br>Bromentatasas<br>Leoro Ps<br>Cesson score<br>Ape<br>Disease turken (PSM-PET)<br>PSMA SU/Ineas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$95     295     127     117     115     Aosort     Present     0 or unknown     1-2     32     472     32     10     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Cabacitaxel<br>(n/N)<br>7882<br>4143<br>4445<br>5507<br>3840<br>4042<br>4042<br>7173<br>7679<br>7679<br>303<br>3839<br>4143<br>3839<br>4143<br>28627<br>4044<br>4545<br>4042<br>45447<br>1920<br>6082<br>5759                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Progression 4<br>4,2/2 - 4,0/<br>1,2/2 - 4,0/<br>1                                                                                                                                                | Iree surviv<br>LuPSMA<br>(nN)<br>5036<br>47/50<br>43/46<br>43/43<br>23/43<br>20/53<br>40/43<br>81/87<br>81/87<br>81/87<br>83/44<br>51/55<br>23/24<br>49/52<br>49/52<br>49/52<br>49/52<br>49/52<br>49/52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LPSA, median<br>monts (89%, C1)<br>34 (34-54)<br>34 (34-54)<br>34 (34-54)<br>43 (34-54)<br>43 (34-54)<br>34 (34-54)<br>34 (34-54)<br>34 (34-54)<br>34 (34-54)<br>34 (34-54)<br>34 (34-54)<br>34 (34-54)<br>44 (34-54)<br>44 (34-54)<br>44 (34-54)<br>44 (34-54)<br>34 ( |                                        | Hazard Ratio<br>(95% Cl)<br>0.54 (0.46~0.87)<br>0.55 (0.35~0.07)<br>0.55 (0.35~0.07)<br>0.52 (0.46~1.07)<br>0.52 (0.47~0.07)<br>0.51 (0.32~0.07)<br>0.52 (0.47~0.07)<br>0.52 (0.47~0.07)<br>0.52 (0.31~0.07)<br>0.53 (0.31~0.07)<br>0.73 (0.46~1.17)<br>0.72 (0.46~1.17)<br>0                      | P           0.050           0.054           0.054           0.054           0.054           0.054           0.054           0.055           0.056           0.056           0.056           0.056           0.056           0.056           0.056           0.056           0.056           0.056           0.056           0.056           0.056           0.056           0.056           0.056           0.056           0.056           0.056           0.056           0.056           0.056           0.056           0.056           0.056           0.056           0.056           0.056           0.057           0.058           0.058           0.058           0.058           0.058           0.058           0.058           0.058           0.058           0.058           0.058                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |
| Ratents<br>PSA (point)<br>Internegitain (pC)<br>ALP (UL)<br>ALP (UL)<br>Internetistates<br>ECCO PS<br>Classon torder<br>App<br>Docesso burder (PSMA-PET)<br>PSMA SU/Years                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$95<br>>95<br>2127<br>4127<br>415<br>715<br>Abant<br>Present<br>0 or sknown<br>10<br>0 or sknown<br>20<br>57<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>resent<br>20<br>res<br>20<br>res<br>20<br>res<br>20<br>res<br>20<br>res<br>20<br>res<br>20<br>res<br>20<br>res<br>20<br>re<br>20<br>res<br>20<br>2 | Cabazitaxel<br>(n/N)<br>7882<br>4463<br>4563<br>4563<br>4564<br>4062<br>4062<br>4062<br>4063<br>4063<br>4163<br>4163<br>4565<br>4064<br>4064<br>4565<br>4067<br>4062<br>4062<br>4569<br>4062<br>4579<br>4062<br>4579<br>4565                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Progression           Cabazitazet, median<br>montes (955, Cd)           42,62,2-60)           42,62,2-60)           42,62,2-60)           42,62,2-60)           42,62,2-60)           42,62,2-60)           42,62,2-60)           42,62,4-60)           42,62,4-60)           42,62,4-60)           42,62,4-64)           43,62,6-74)           44,62,6-74)           42,62,6-74)           42,62,6-74)           42,62,6-74)           42,62,6-74)           42,62,6-74)           42,62,6-74)           42,62,6-74)           42,62,6-74)           42,62,6-74)           42,62,6-74)           42,62,6-74)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Introduction           LupPSMA           (m)N           4046           4750           4043           5053           5053           6053           4043           8080           4043           8081           8082           4043           8081           8082           44           8041           8052           444           8041           8052           442           8052           442           8052           443           8041           8052           444           8052           4052           4052           4052           4052           4052           4052           4052           4052           4052           4052           4052           4052           4052           4052           4052           4052           4052   4052  < | 4<br>L4P3A. median<br>moths (9% C)<br>5.1 (a – 6.5)<br>5.2                                                                                                                                                                                                                                                                                           |                                        | Hazard Ratio           (95% Cl)           0.46 (404-037)           0.55 (0.35-035)           0.55 (0.35-035)           0.77 (4.46-12)           0.80 (0.37-13)           0.80 (0.37-13)           0.80 (0.37-13)           0.80 (0.37-13)           0.78 (0.47-13)           0.79 (0.47-12)           0.80 (0.37-13)           0.79 (0.47-12)           0.71 (0.46-11)           0.72 (0.47-13)           0.73 (0.47-12)           0.71 (0.46-11)           0.80 (0.37-13)           0.80 (0.37-13)           0.81 (0.47-03)           0.83 (0.47-03)           0.83 (0.47-13)           0.84 (0.47-03)           0.81 (0.47-13)           0.81 (0.47-13)           0.83 (0.47-13)           0.83 (0.47-13)           0.84 (0.47-13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <ul> <li>р</li> <li>0.050</li> <li>0.054</li> <li>0.054</li> <li>0.054</li> <li>0.054</li> <li>0.054</li> <li>0.054</li> <li>0.054</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |
| В<br>45 мрснета<br>мрснета<br>400 мрсна<br>400 мрсн                                                                                                                                                                   | 495<br>- 395<br>- 1127<br>- 1137<br>- 115<br>- 2115<br>- 2115<br>- 200<br>- 212<br>- 210<br>- 21                                                                                                                                                                                                                                | Cabacitaxel<br>(n/N)<br>78:82<br>43:83<br>43:83<br>43:83<br>44:43<br>45:87<br>40:42<br>40:42<br>40:42<br>40:42<br>40:42<br>40:43<br>40:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:43<br>41:45<br>41:45<br>41:45<br>41:45<br>41:45<br>41:45<br>41:45<br>41:45<br>41:45<br>41:45<br>41:45<br>41:45<br>41:45<br>41:45<br>41:45<br>41:45<br>41:45<br>41:45<br>41:45<br>41:45<br>41:45<br>41:45<br>41:45<br>41:45<br>41:45<br>41:45<br>41:45<br>41:45<br>41:45<br>41:45<br>41:45<br>41:45<br>41:45<br>41:45<br>41:45<br>41:45<br>41:45<br>41:45<br>41:45<br>41:45<br>41:45<br>41:45<br>41:45<br>41:45<br>41:45<br>41:45<br>41:45<br>41:45<br>41:45<br>41:45<br>41:45<br>41:45<br>41:45<br>41:45<br>41:45<br>41:45<br>41:45<br>41:45<br>41:45<br>41:45<br>41:45<br>41:45<br>41:45<br>41:45<br>41:45<br>41:45<br>41:45<br>41:45<br>41:45<br>41:45<br>41:45<br>41:45<br>41:45<br>41:45<br>41:45<br>41:45<br>41:45<br>41:45<br>41:45<br>41:45<br>41:45<br>41:45<br>41:45<br>41:45<br>41:45<br>41:45<br>41:45<br>41:45     | Progression-4           Cabazitaci, median<br>montes (955, 40)           4/2/0-2-640           4/2/0-2-640           4/2/0-2-640           4/2/0-2-640           4/2/0-2-640           4/2/0-2-640           4/2/0-2-640           4/2/0-2-640           4/2/0-2-640           4/2/0-2-640           4/2/0-2-640           4/2/0-2-640           4/2/0-2-640           4/2/0-2-640           4/2/0-2-640           4/2/0-2-640           4/2/0-2-640           4/2/0-2-640           4/2/0-2-640           4/2/0-2-640           4/2/0-2-640           4/2/0-2-640           4/2/0-2-640           4/2/0-2-640           4/2/0-2-640           4/2/0-2-640           4/2/0-2-640           4/2/0-2-640           4/2/0-2-640           4/2/0-2-640           4/2/0-2-640           4/2/0-2-640           4/2/0-2-640           4/2/0-2-640           4/2/0-2-640           4/2/0-2-640           4/2/0-2-640           4/2/0-2-640           4/2/0-2-640           4/2/0-2-640                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Survivi           LuPSMA           G0/8           90/8           47/80           30/8           5253           5053           6053           6054           6059           8/80           8/81           39/9           8/82           4/952           4/952           4/952           4/952           4/952           4/952           4/952           6/952           6/952           6/952           6/952           6/952           6/952           6/952           6/952           6/952           6/952           6/952           6/952           6/953           6/954           6/955           6/955                                                                                                                                                       | LPSA. Accident<br>monthe (SS, CI)<br>5.1 (JA - 6.3)<br>3.2 (JA - 8.4)<br>3.2 (JA - 8.4)<br>4.3 (JA - 8.4)<br>4.3 (JA - 8.4)<br>3.2 (JA - 8.4)<br>4.2 (JA - 8.4)<br>3.2 (JA - 8.4)<br>4.2 (JA - 8.4)<br>3.2 (                                                                                                                                                    |                                        | Hazard Ratio<br>(95%, CI)<br>0.44 (0.46~0.57)<br>0.55 (0.35-0.35)<br>0.55 (0.35-0.35)<br>0.57 (0.46-0.37)<br>0.57 (0.46-0.37)<br>0.58 (0.47-0.37)<br>0.58 (0.47-0.37)<br>0.58 (0.47-0.37)<br>0.58 (0.47-0.37)<br>0.58 (0.47-0.37)<br>0.71 (0.46-1.37)<br>0.72 (0.47-1.37)<br>0.72 (0.47-1.37)<br>0.73 (0.57-1.37)<br>0.83 (0.57-1.37)<br>0.83 (0.57-1.37)<br>0.83 (0.57-1.37)<br>0.84 (0.44-0.47)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | P           0.050           0.051           0.054           0.054           0.054           0.054           0.054           0.055           0.056           0.056           0.056           0.056           0.056           0.056           0.056           0.056           0.056           0.056           0.056           0.056           0.056           0.056           0.056           0.056           0.056           0.056           0.056           0.057           0.058           0.056           0.056           0.057           0.058           0.058           0.058           0.058           0.058           0.058           0.058           0.058           0.058           0.058           0.058           0.058           0.058           0.058           0.058           0.058                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |
| В<br>акранена<br>рек иронс)<br>наеноудейн орс)<br>акр (иск)<br>воон писказаная<br>соон ря<br>оненая казаная<br>оненая казаная<br>рекон колон<br>рекон колон<br>рекон<br>рекон колон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>рекон<br>ре | 195<br>-95<br>-127<br>-117<br>-115<br>-115<br>-115<br>-215<br>-215<br>-210<br>-220mL<br>-220mL<br>-220mL<br>-220mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cabazitaxel<br>(n/N)<br>75/82<br>3639<br>41/43<br>3639<br>41/43<br>3637<br>89<br>40/42<br>76/79<br>3/3<br>3/3<br>3/3<br>3/3<br>3/3<br>3/3<br>3/3<br>3/3<br>3/3<br>3/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Progression-1           4.2.2.2.4.2.4.4.4.4.4.4.4.4.4.4.4.4.4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LuPSAL<br>(IN)<br>0006<br>4750<br>005<br>005<br>005<br>005<br>005<br>005<br>005<br>005<br>005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A<br>LAPSAA, cuestion<br>montos (89%, Cl.)<br>5.0 (24-2-6.)<br>2.0 (20-2-0.)<br>2.0 (20-2-0                                                                                                                                                                                                                                                                                            |                                        | Hazard Ratio<br>(95% C1)<br>0.44 (0.44-0.47)<br>0.55 (0.35-0.03)<br>0.72 (0.44-1.01)<br>0.50 (0.31-0.03)<br>0.73 (0.44-1.03)<br>0.73 (0.45-1.03)<br>0.73 (0.45-1.03)<br>0.74 (0.45-1.03)<br>0.74 (0.45-1.03)<br>0.74 (0.45-1.03)<br>0.75 (0.45-1.03)<br>0                      | P           0.050           0.054           0.054           0.054           0.054           0.054           0.054           0.054           0.055           0.056           0.056           0.056           0.056           0.056           0.056           0.056           0.056           0.056           0.056           0.056           0.056           0.056           0.056           0.056           0.056           0.056           0.056           0.056           0.056           0.056           0.056           0.056           0.056           0.056           0.056           0.056           0.056           0.056           0.057           0.058           0.058           0.058           0.056           0.056           0.056           0.056           0.056           0.057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |
| Baseweiter<br>PSA (regine).<br>Heemodelin (pCL)<br>ALP (UL)<br>Bore metalatases<br>Luer metalatases<br>Coop PS<br>Caleson score<br>Desenes burdin (PBMA-PET)<br>PSMA SJ/Mean<br>ECG MTV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1855<br>1-25<br>1-127<br>1151<br>2-115<br>2-115<br>2-115<br>2-115<br>2-115<br>2-11<br>2-12<br>2-11<br>2-12<br>2-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cabazitaxel<br>(n/N)<br>7882<br>4143<br>4143<br>4445<br>8567<br>4042<br>4042<br>4042<br>4042<br>4042<br>4042<br>4043<br>4047<br>4043<br>4047<br>4047<br>4047<br>4047<br>4047                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pagasabad           Jabaztaz et, median<br>mentes (MS, Ed)           4/2/2-4/00           4/2/2-4/00           4/2/2-4/00           4/2/2-4/00           4/2/2-4/00           4/2/2-4/00           4/2/2-4/00           4/2/2-4/00           4/2/2-4/00           4/2/2-4/00           4/2/2-4/00           4/2/2-4/00           4/2/2-4/00           4/2/2-4/00           4/2/2-4/00           4/2/2-4/00           4/2/2-4/00           4/2/2-4/00           4/2/2-4/00           4/2/2-4/00           4/2/2-4/00           4/2/2-4/00           4/2/2-4/00           4/2/2-4/00           4/2/2-4/00           4/2/2-4/00           4/2/2-4/00           4/2/2-4/00           4/2/2-4/00           4/2/2-4/00           4/2/2-4/00           4/2/2-4/00           4/2/2-4/00           4/2/2-4/00           4/2/2-4/00           4/2/2-4/00           4/2/2-4/00           4/2/2-4/00           4/2/2-4/00           4/2/2-4/00           4/2/2-4/00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Tree survivi           LuPSMA           (nN)           0006           4/360           3043           5053           5053           5053           6043           6043           6043           6043           6043           6043           6043           6043           6044           6043           6044           6043           6044           6043           6044           6044           6045           60452           60452           60452           60454           60454           60454           60454           60454           60454           60454           60454           60454           60454           60454           60454           60454           60454                                                                             | L LLPAA. median<br>monte (9% CI)<br>5.1 (JA - 6.5)<br>3.6 (JA - 8.5)<br>3.6 (JA - 8.5)<br>3.6 (JA - 8.5)<br>3.6 (JA - 8.5)<br>3.6 (JA - 8.5)<br>3.7 (JA - 5.4)<br>3.7 (JA - 5.4)                                                                                                                                                                                                                                                                                                              |                                        | Hazard Ratio<br>(95% CJ)<br>8.64 (0.40-0.27%)<br>8.75 (0.35-0.35)<br>0.72 (0.46-1.1)<br>0.73 (0.46-1.2)<br>0.73 (0.47-1.2)<br>0.75 (0.47-0.2)<br>0.75 (0.47-0.2                                                                                                                                                | P           0.050           0.051           0.052           0.054           0.054           0.054           0.054           0.054           0.054           0.054           0.055           0.066           0.067           0.067           0.067           0.068           0.068           0.068           0.068           0.068           0.068           0.068           0.068           0.068           0.068           0.069           0.069           0.069           0.069                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |

Extended Data Fig. 7 | Clinical outcomes by baseline clinical variables in allcomers. Forest plots show post-hoc sensitivity analyses for (a) PSA50 response, (b) progression-free survival, and (c) overall survival endpoints according to baseline clinical variables. The 'All patients' category includes those in the allcomers biomarker population (n = 178). ALP, alkaline phosphatase; ECOG PS,

Eastern Cooperative Oncology Group performance status; FDG, 2-[<sup>18</sup>F] fluoro-2-deoxy-D-glucose; HR, hazard ratio; MTV, metabolic tumour volume; PSA, prostate-specific antigen; PSMA, prostate-specific membrane antigen; Ref, reference; SUV, standardised uptake value.



**Extended Data Fig. 8** | **PSA response by DDR alterations.** Best PSA response in the four most commonly altered DNA damage repair-related gene categories: *ATM, BRCA1/2, CDK12,* and mismatch repair. PSA response for each gene category is expressed at a per-treatment arm level, and further stratified by either (a)



PSMA SUVmean (<10 and  $\geq$ 10) or (**b**) ctDNA% level (medium [2–30%] and high [>30%]). MMR, mismatch repair; PSA, prostate-specific antigen; PSMA, prostate-specific membrane antigen; SUV, standardised uptake value.



**Extended Data Fig. 9** | **Copy number status in tumour suppressor genes across consecutive samples.** Correlation of the copy number status of tumour suppressor genes *TP53, PTEN* and *RB1* between consecutive ctDNA samples from

the same patient. Each dot represents a consecutive sample pair (baseline and progression). Pearson's correlation coefficient (two-sided) is reported for each comparison.

# nature portfolio

Corresponding author(s): Alexander W. Wyatt

Last updated by author(s): Mar 25, 2025

# **Reporting Summary**

Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Portfolio policies, see our <u>Editorial Policies</u> and the <u>Editorial Policy Checklist</u>.

# Statistics

| For         | all st      | atistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.                                                                                                                           |
|-------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| n/a         | Cor         | firmed                                                                                                                                                                                                                                                        |
|             | $\boxtimes$ | The exact sample size ( $n$ ) for each experimental group/condition, given as a discrete number and unit of measurement                                                                                                                                       |
|             | $\boxtimes$ | A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly                                                                                                                                       |
|             | $\boxtimes$ | The statistical test(s) used AND whether they are one- or two-sided<br>Only common tests should be described solely by name; describe more complex techniques in the Methods section.                                                                         |
|             | $\boxtimes$ | A description of all covariates tested                                                                                                                                                                                                                        |
|             | $\boxtimes$ | A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons                                                                                                                                           |
|             |             | A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)<br>AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals) |
|             |             | For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted<br>Give P values as exact values whenever suitable.                                                              |
| $\boxtimes$ |             | For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings                                                                                                                                                              |
| $\boxtimes$ |             | For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes                                                                                                                                        |
|             | $\boxtimes$ | Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated                                                                                                                                                                  |
|             |             | Our web collection on <u>statistics for biologists</u> contains articles on many of the points above.                                                                                                                                                         |
|             |             |                                                                                                                                                                                                                                                               |

# Software and code

Policy information about availability of computer code

Data collectionNo custom software was used to collect data. Blood samples and patient meta data were collected as described in the original clinical trial<br/>protocol. Sequencing data was generated and analyzed in-house by co-authors as described in the manuscript Methods and Supplementary<br/>Information. Patient clinical data was originally collected and curated/audited as part of the original clinical study publications (Hofman et al.,<br/>Lancet 2021; Hofman et al., Lancet Oncology 2024).Data analysisAs described in the Methods, statistical tests and data analyses were conducted in R v.4.4.0 (using dplyr v1.1.4, forcats v1.0.0, janitor 2.2.0,<br/>lubridate v1.9.3, purr v1.0.2, psych v2.4.3, stringr v1.5.1, stats v.4.4.0, gtsummary v1.7.2, survival v3.5-8) and in Python 3.9.12 (using pandas<br/>v.1.4.2, numpy v.1.23.5, scipy v.1.10.1, statsmodels v.0.13.5), and Julia v1.8.5. Visualisations were generated using the R packages ggplot2<br/>v.3.4.3, forestplot v3.1.3, survminer v.0.4.9, cowplot v.1.1.3, and patchwork v.1.2.0, and the Python packages matplotlib v.3.7.1 and seaborn<br/>v.0.1.2.4, bedtools v.2.26, samtools v.1.8 (htslib v.1.8), Mutato v.0.8, and ANNOVAR (v.20191024).

Our complete ctDNA somatic variant calling pipeline is available on GitHub (https://github.com/annalam/cfdna-wgs-manuscript-code) and is described in detail in a prior publication(Herberts et al. 2022). No additional custom software was utilised for any analysis performed herein.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability
- For clinical datasets or third party data, please ensure that the statement adheres to our policy

ANZUP is obligated to protect the rights and privacy of trial participants, thereby necessitating restricted access to patient-level clinical and genomic sequencing data. De-identified participant data will be made available to researchers who are registered with an appropriate institution following publication. Methodologically sound proposals for any purpose will be considered by the trial executive committee who will have the right to review and comment on any draft manuscripts before publication. Proposals should be directed to michael.hofman@petermac.org. To gain access, data requesters will be required to sign a data access agreement. Timeframe for data access will be subject to ANZUP policy and process. All other data supporting the findings of this study are available within the article (including its Supplementary Data and Source Data files).

# Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), and sexual orientation and race, ethnicity and racism.

| Reporting on sex and gender                                        | Prostate cancer only affects people with prostates (i.e. biological males). This cohort includes people with prostate cancer irrespective of gender identity. All samples are de-identified at time of collection, and all researchers are blind to patient gender identity and gender presentation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reporting on race, ethnicity, or other socially relevant groupings | Race and ethnicity data was not provided to researchers conducting this study, and no groupings related to race and ethnicity were used.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Population characteristics                                         | Patient characteristics of the clinical trial have been extensively described in prior publications (Hofman et al., Lancet 2021;<br>Hofman et al., Lancet Oncology 2024), and can also be found in Supplementary Table 1 of this manuscript.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Recruitment                                                        | Recruitment details have been comprehensively described in the original trial publications, the ClinicalTrials.gov entry (https://clinicaltrials.gov/study/NCT03392428), and the trial protocol (https://bjui-journals.onlinelibrary.wiley.com/doi/10.1111/bju.14876). We analyzed samples from patients who were enrolled and voluntarily consented to provide samples for research purposes. All participants were screened with [68Ga]Ga-PSMA-11 (PSMA-PET) and 2-[18F]FDG-PET (FDG-PET) scans to select for high PSMA uptake at metastatic site(s) without discordant disease (2-[18F]FDG-positive lesion with low/no PSMA uptake). As described in the manuscript, the biological implications of this stringent imaging pre-selection may limit generalisability of our findings to settings where FDG-PET is not used to evaluate PSMA radioligand therapy candidacy. |
| Ethics oversight                                                   | TheraP was a multicentre trial and received ethics approval at each participating institute. All participants provided signed, written, and informed consent for their samples to be used for research purposes. The trial was done in accordance with the principles of the Good Clinical Practice guidelines and the Declaration of Helsinki.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

Note that full information on the approval of the study protocol must also be provided in the manuscript.

# Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

K Life sciences

Behavioural & social sciences Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see <u>nature.com/documents/nr-reporting-summary-flat.pdf</u>

# Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

| Sample size     | Sample size was not predetermined for this exploratory post hoc analysis - we analyzed all samples from patients enrolled in the trial (NCT03392428, ACTRN12615000912583) who had a baseline sample collected. No formal predefined criteria was used to determine minimum acceptable sample size for exploratory correlative analyses. |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data exclusions | The inclusion criteria for the trial (NCT03392428, ACTRN12615000912583) has been previously published. From the overall cohort, we excluded two patients due to inadequate sequencing data quality of their baseline cfDNA samples. When samples were excluded from sub-                                                                |
|                 | analyses, the rationale and denominators are clearly listed in the manuscript text and/or annotated in the figures and figure legends.                                                                                                                                                                                                  |
| Replication     | Analyses were descriptive. No experiments requiring technical or biological replicates were performed (as is convention for panel-based DNA                                                                                                                                                                                             |

 Replication
 sequencing of clinical trial samples). Repeat sequencing of identical plasma samples was not performed.

 Randomization
 Randomization is not used in our descriptive post hoc correlative study, although the original trial (NCT03392428, ACTRN12615000912583) from which samples were obtained is a randomized clinical trial. Randomization is categorically not applicable to any of the descriptive statistical methodology contained herein (e.g. we do not use any complex machine-learning models or bootstrapping methods where random sampling is embedded).

 Rlinding
 The original trial (NCT03292428, ACTRN12615000912582) from which camples were obtained was open label. Perceptors are pet blind to the original trial (NCT03292428, ACTRN12615000912582) from which camples were obtained was open label.

Blinding

The original trial (NCT03392428, ACTRN12615000912583) from which samples were obtained was open-label. Researchers are not blind to patient treatment allocation or clinical characteristics for this post hoc correlative study.

# Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

### Materials & experimental systems

#### Methods

|             |                               | -           |                        |
|-------------|-------------------------------|-------------|------------------------|
| n/a         | Involved in the study         | n/a         | Involved in the study  |
| $\boxtimes$ | Antibodies                    | $\boxtimes$ | ChIP-seq               |
| $\boxtimes$ | Eukaryotic cell lines         | $\times$    | Flow cytometry         |
| $\boxtimes$ | Palaeontology and archaeology | $\ge$       | MRI-based neuroimaging |
| $\boxtimes$ | Animals and other organisms   |             |                        |
|             | 🔀 Clinical data               |             |                        |
| $\boxtimes$ | Dual use research of concern  |             |                        |
| $\boxtimes$ | Plants                        |             |                        |
|             |                               |             |                        |

# Clinical data

Policy information about <u>clinical studies</u>

All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

| Clinical trial registration | NCT03392428, ACTRN12615000912583                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Study protocol              | Trial details have been previously published in detail and are cited in Methods.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Data collection             | Sample collection and initial processing details are available in the Supplementary Information. Information regarding patient recruitment to the original TheraP trial - including participating locations and enrollment timelines - have been published previously (NCT03392428; Hofman et al., Lancet 2021; Hofman et al., Lancet Oncology 2024).                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Outcomes                    | Clinical endpoints evaluated in this study included PSA response rate, progression-free survival, and overall survival; extended definitions for these endpoints have previously been described and is cited in the Methods. PSA response rate was defined as the proportion of participants with a PSA reduction of ≥50% from baseline. Progression-free survival is defined as the interval from the date of randomisation to the date of first evidence of PSA progression (as per PCWG3 criteria), pain progression, radiographic progression, or death from any cause, whichever occurs first, or the date of last known follow-up without progression. Overall survival is defined as the interval from the date of registration to date of death from any cause, or the date of last known follow-up alive. |

# Plants

| Seed stocks           | Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If plant specimens were collected from the field, describe the collection location, date and sampling procedures.                                                                                                                                                                                                                                                                                                          |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Novel plant genotypes | Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches, gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe the editor upon which experiments were dited, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor |
| Authentication        | was applied.<br>Describe any authentication procedures for each seed stock used or novel genotype generated. Describe any experiments used to<br>assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,<br>off-target gene editing) were examined.                                                                                                                                                                                                                                 |