

L. Horvath^{1,22}, I. Davis^{2,22}, A. Martin^{3,22}, R. Zielinski^{4,21,22}, A. Thomson⁵, T. Tan^{6,22}, S. Sandhu^{7,22}, M. Reaume⁸, D. Pook^{9,22}, F. Parnis^{10,22}, S. Sandhu^{7,22}, M. Reaume⁸, D. Pook^{9,22}, F. Parnis^{10,22}, S. Sandhu^{7,22}, A. Thomson⁵, T. Tan^{6,22}, S. Sandhu^{7,22}, A. Thomson⁵, T. Tan^{6,22}, S. Sandhu^{7,22}, S. San K. Chi¹⁸, M. Stockler^{19,22}, C. Sweeney^{20,22}

¹Chris O'Brien Lifehouse, Camperdown, NSW, Australia, ³NHMRC Clinical Trials Centre, University and Eastern Health, Box Hill, VIC, Australia, ³NHMRC Clinical Trials Centre, Adelaide, SA, Australia, ⁴Orange Health Service, Orange, Australia, ⁵Royal Cornwall Hospital, Truro, United Kingdom, ⁶Royal Adelaide Hospital Cancer Centre, Adelaide, SA, Australia, ¹Chris O'Brien Lifehouse, Camperdown, NSW, Australia, ³NHMRC Clinical Trials Centre, University of Sydney, Camperdown, Australia, ⁴Orange Health Service, Orange, Australia, ⁴Orange Health, Box Hill, VIC, Australia, ⁴Orange Health Service, Orange, Australia, ⁴Orange Health Service, Orange, Australia, ⁴Orange Health, Box Hill, VIC, Australia, ⁴Orange Health, Box Hill, ⁴Orange Health, Box Hill, ⁴Orange Health, ⁴Orange Health, ⁵Orange Health, ⁵Orang ⁷Peter MacCallum Cancer Centre, Melbourne, VIC, Australia, ¹⁰ICON Cancer Centre, Clayton, VIC, Australia, ¹⁰ICON Centre, ¹⁰ICON Centre, ¹⁰ICON Centre, ¹⁰ICON Centre, ¹⁰IC ¹²Sydney Adventist Hospital, Wahroonga, NSW, Australia, ¹³The Mater Misericordiae University, Clayton, VIC, Australia, ¹⁴AMNCH Adelaide and Meath Hospital, Dublin, Ireland, ¹⁴AMNCH Adelaide and Meath Hospital, Dublin, Ireland, ¹⁴AMNCH Adelaide and Meath Hospital, ¹³The Mater Misericordiae University, Clayton, VIC, Australia, ¹⁴AMNCH Adelaide and Meath Hospital, ¹⁴AMNCH Adelaide, ¹⁴AMNC London, United Kingdom, ¹⁸BC Cancer - Vancouver Centre, Vancouver, British Columbia, Canada,¹⁹NHMRC Clinical Trials Centre, Vancouver, NSW, Australia,²¹Western Sydney University, NSW, Australia,²²ANZUP, Camperdown, NSW, Australia,²¹Western Sydney University, NSW, Australia,²¹Western Sydney University, NSW, Australia,²²ANZUP, Camperdown, NSW, Australia,²¹Western Sydney University, NSW, Australia,²¹Western Sydney University, NSW, Australia,²²ANZUP, Camperdown, NSW, Australia,²¹Western Sydney University, NSW, Australia,²¹Western Sydney University, NSW, Australia,²¹Western Sydney University, NSW, Australia,²¹Western Sydney University, NSW, Australia,²²ANZUP, Camperdown, NSW, Australia,²¹Western Sydney University, NSW, Australia,²¹Western Sydney Univers

1. Background

- Androgen receptor pathway inhibitors (ARPIs) such as enzalutamide (ENZA) plus testosterone suppression (TS) are now standard of care for people with metastatic hormone-sensitive prostate cancer (mHSPC).
- Triplet therapy incorporating docetaxel chemotherapy with an ARPI and TS is now used for chemo-fit people with predominantly synchronous high volume mHSPC.
- Older patients may have more co-morbidities and higher rates of frailty.

2. Methods

- The ENZAMET clinical trial randomised participants (pts) with mHSPC to receive TS plus either non-steroidal antiandrogen (NSAA) or ENZA.
- Pre-specified stratification factors included: age (<70yrs vs \geq 70yrs); volume of disease (high vs low), planned use of concurrent docetaxel (DTX); and Adult Comorbidity Evaluation (ACE-27 score of 0-1 (none or 1 mild comorbidity) versus 2-3 (moderate, severe, and/or multiple comorbidities).
- In this post-hoc analysis, we assess the efficacy and tolerability of ENZA in patients with mHSPC by age quartiles.
- Statistical methods: Survival analyses (overall survival and deterioration free survival) and adverse event rates were considered by age quartiles.

3. Study Design

Design:

Open label multi-national randomised phase 3 clinical trial

Treatments:

ANZUP 11304 Poster.indd 1

Testosterone suppression + Enzalutamide (160mg)/NSAA ± docetaxel

Target Population: 1125 participants with mHSPC

Endpoints: Primary: OS Secondary: PSA-PFS

This study was conducted by the Australian and New Zealand Urogenital and Prostate Cancer Trials Group Ltd (ANZUP) in collaboration with the NHMRC Clinical Trials Centre, University of Sydney. This ANZUP investigator-initiated study received financial support and study drug from Astellas. ANZUP receives valuable infrastructure support from the Australian Government through Cancer Australia.

Age

4. Results

• 514/1125 (46%) pts aged \geq 70yrs.

• The rate of DTX usage was lower in pts aged \geq 70 yrs (35% vs 52%).

• When analysed by age quartiles: DTX usage declines the older age group with the largest drop is in the highest age quartile (74-96 yrs) (table 1).

Characteristic	[41,63) N = 281 ¹	[63,69) N = 281 ¹	[69,74) N = 281 ¹	[74,96] N = 282 ¹
Age (Years)				
N	281	281	281	282
Mean (SD)	58 (4)	66 (2)	72 (2)	79 (4)
Median (IQR)	59 (55, 62)	67 (65, 68)	72 (70, 73)	78 (76, 81)
Range	41,63	63, 69	69, 74	74,96
N missing	0	0	0	0
M0 recorded at initial diagnosis (Mx/UK→M0)	96 (34%)	105 (37%)	128 (46%)	113 (40%)
Volume of disease strata				
High	153 (54%)	145 (52%)	147 (52%)	157 (56%)
_OW	128 (46%)	136 (48%)	134 (48%)	125 (44%)
Docetaxel chemotherapy strata missing set to no)	162(58%)	136 (48%)	130 (46%)	75 (27%)
Freatment Arm				
Conventional NSAA	135 (48%)	149 (53%)	136 (48%)	142 (50%)
Enzalutamide	146 (52%)	132 (47%)	145 (52%)	140 (50%)
ACE-27 strata				
D-1	224 (80%)	216 (77%)	206 (73%)	188 (67%)
2-3	57 (20%)	65 (23%)	75 (27%)	94 (33%)
ACE-27 co-morbidity score				
)	125 (44%)	89 (32%)	75 (27%)	49 (17%)
	99 (35%)	127 (45%)	131 (47%)	139 (49%)
2	33 (12%)	39 (14%)	51 (18%)	58 (21%)
3	24 (8.5%)	26 (9.3%)	24 (8.5%)	36 (13%)
n (%)				

Acknowledgments:

We thank the trial participants, principal investigators, co-investigators, and study coordinators at all participating centres for their commitment to this trial.

5. Analysis of Efficacy

- the planned use of
- Analysis by age \geq 74yrs (Figure 1).

Clinic prog Clinic Deat

- Patie prefe Treat Ongo
- ceas

• The beneficial effects of ENZA on OS are maintained in pts aged \geq 70yrs regardless of early DTX (Table 2).

quartiles demonstrates improved outcomes even in those aged

Characteristic	Ν	Deaths	HR	95% CI
Full cohort	1125	476	0.70	0.58-0.84
Age alone				
<70yrs All	611	239	0.75	0.58-0.97
≥70yrs All	514	237	0.64	0.50-0.83
Age and DTX				
<70yrs and DTX	322	147	0.87	0.63-1.20
≥70yrs and DTX	181	84	0.73	0.47-1.12
<70yrs and No DTX	289	92	0.62	0.41-0.94
≥70 and No DTX	333	153	0.60	0.44-0.83

Table 2: Hazard ratios (HR) and confidence intervals (CI) for effects of ENZA vs NSAA on OS in subgroups according to age and planned DTX

Figure 2: Subgroup analyses for deterioration-free survival* according to age quartiles

Conventional NSAA, N = 562						Enzalutamide, N = 563			
aracteristic	N <mark>[41,63)</mark> , N = 135 ¹	[63,69) , N = 149 ¹	[69,74) , N = 136 ¹	[74,96], N = 142 ¹	N [41,63), N = 146 ¹	[63,69), N = 132 ¹	[69,74), N = 145 ¹	[74,96], N = 140 ¹	
ason									
Adverse event	6 (4.4%)	5 (3.4%)	8 (5.9%)	6 (4.2%)	12 (8.2%)	8 (6.1%)	20 (14%)	23 (16%)	
Clinical progression	70 (52%)	69 (46%)	69 (51%)	80 (56%)	49 (34%)	47 (36%)	40 (28%)	44 (31%)	
Clinician preference	18 (13%)	28 (19%)	16 (12%)	29 (20%)	7 (4.8%)	7 (5.3%)	5 (3.4%)	5 (3.6%)	
Death	1 (0.7%)	2 (1.3%)	2 (1.5%)	4 (2.8%)	1 (0.7%)	4 (3.0%)	2 (1.4%)	8 (5.7%)	
Other	2 (1.5%)	3 (2.0%)	0 (0%)	1 (0.7%)	3 (2.1%)	3 (2.3%)	2 (1.4%)	2 (1.4%)	
Patient preference	13 (9.6%)	9 (6.0%)	9 (6.6%)	6 (4.2%)	7 (4.8%)	2 (1.5%)	5 (3.4%)	6 (4.3%)	
Treatment Ongoing (not ceased)	25 (19%)	33 (22%)	32 (24%)	16 (11%)	67 (46%)	61 (46%)	71 (49%)	52 (37%)	
(0/)									

Pts with ongoing treatment appear in last row

Table 3: Reasons for Discontinuation by Age Quartiles

rials@anzup.org.au	

www.anzup.org.au **@ANZUPtrials**

Charac

Age

#ENZAMET

6. Tolerability of ENZA in older pt

• It is important to balance efficacy and longevity against toxicity and potential effects on quality of life when treating older pts.

• Pts in the oldest quartile have similar rates of G3-5 AEs with ENZA compared to younger pts: Age 74-96 HR 0.77 (95% CI 0.63-0.93) vs Age 41-63 HR 0.66 (95% CI 0.56-0.78), p=0.002.

• Pts aged 69-74 had higher rates of toxicity, probably reflecting higher rates of DTX use compared to the oldest quartile.

• Similarly, rates of adverse events of interest (fatigue, cognitive disturbance, memory impairment, fall, generalised muscle weakness, seizure and hypertension) were highest in ages 69-74 years (Figure 3).

• Total AEs (not normalised for time on therapy) were greater with ENZA, as previously reported. AE rates increased with age in the ENZA group.

• AEs leading to ENZA treatment discontinuation were almost twice as likely in ages 69-74 and 74-96 years compared to younger quartiles (Table 3).

teristic	Level	NSAA	ENZA				HR (CI)	P-Value
		n/N	n/N					Interaction
	[41,63)	722/102	1655/133			-	1.13 (1.03 to 1.23)	<0.001
	[63,69)	889/115	1471/122			• •• •	1.11 (1.02 to 1.21)	
	[69,74)	620/101	1737/132			-	1.57 (1.44 to 1.73)	
	[74,96]	508/95	1529/128				1.3 (1.18 to 1.44)	
				[]		1		
			0.	25	0.50	1.0	2.0	
			~					
			<	More AE	with NSAA	More A	AE with ENZA 🔰	
			V					

Figure 3: Subgroup Analyses for Rate of AEs of Interest according to age quartiles

7. Conclusion

This post-hoc analysis of the ENZAMET clinical trial demonstrated: • Older pts treated with TS+ENZA ± DTX have improved survival consistent with the findings in younger pts

• Older pts have a higher incidence of AEs more likely to be related to ENZA treatment

• Further research is needed to optimise dosing for all pts. People aged >70 years with mHSPC should be considered for ENZA treatment

Geriatric assessment and plans to address vulnerabilities should be a part of the treatment paradigm in order to maintain quality of life and independence.

*As defined in Stockler MR et al J Clin Oncol 2022

Abstract #1792P Clinical trial identifier: NCT02446405

11/10/23 9:41 am